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Abstract

The Fast Reactor Cell Code KAPER4

This report describes the code KAPER4, a multigroup

code for neutronics calculations of heterogeneous

lattices of fast reactors. The code solves the integral

transport equation with isotropie scattering by a

collision probability formalism. Though restricted to

one dimension, the code can handle both pin cells of

a fast reactor, and plate cells of heterogeneous criti­

cal facilities.

The method, including the treatment of resonance self­

shielding based on the f-factor concept, is explained

in detail. A description of the program structure and

an input description are given.

The code calculates eigenvalues, fluxes, and reaction

rates. It has several additional capabilities, which

are also described.



Zusammenfassung

Der Zell-Code KAPER4 für Schnelle en

In diesem Bericht wird KAPER4 beschrieben, ein Multigruppen­

Neutronik-Code zur Berechnung von Zellgittern Schneller Reak­

toren. Der Code löst die integrale Transportgleichung mit iso­

troper Streuung nach einem Stoßwahrscheinlichkeitsverfahren.

Obwohl auf eindimensionale Probleme beschränkt, kann der Code

sowohl Stabzellen schneller Leistungsreaktoren als auch Plätt­

chenzellen kritischer Nullenergieanordnungen behandeln.

Die Methode, die eine Behandlung der Resonanzselbstabschirmung

auf der Basis des f-Faktor-Konzeptes einschließt, wird ausführ­

lich erläutert. Eine Beschreibung der Programmstrukturen und

der Eingabe wird ebenfalls gegeben.

Der Code berechnet Eigenwerte, Flüsse und Reaktionsraten.

Darüber hinausgehende Optionen sind zusätzlich möglich. Sie

werden im Detail beschrieben.
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. Introduction

The code KAPER4 calculates eigenvalues and fluxes for heteroge­

neous plate or pin cells of fast reactor lattices. It is an exten­

sion of the earlier code KAPER /1/, which is not used any more.

Cell heterogeneity effects in fast reactors are much smaller than

in thermal reactors, and can be neglected in many cases, e.g. for

survey or scoping type calculations. For example, in a sodium­

cooled power reactor of the SNR-type, the cell thickness is ~ 1 cm,

as compared to the neutron mean free path ~ 5 cm. The difference

in the multiplication factor due to this heterogeneity is only

of the order of 0.1 to 0.2%.

On the other hand, cell calculations are state of the art, and for

any more refined calculations, heterogeneity effects must be in­

cluded. Besides, there are configurations where heterogeneity is

more pronounced than in a standard SNR-type reactor, and cell

calculations are therefore mandatory:

- In plate-type fast critical assemblies, such as in

SNEAK, the mean optical cell thickness is usually larger

than in apower reactor, and fine structure effects are

more pronounced. Flux variations in the cell are usually

several percent. Refined experimental techniques were

developed to measure e.g. reaction rates inside the fuel

plates, or to place material worth sampIes between plates

of acelI. These experiments can only be meaningfully

analyzed with a cell code, and has special features

to treat these configurations. In addition, KAPER4 is

needed to correct for the different heterogeneity when

critical assembly results are used for power reactor

design.

- In the sodium-void case of apower reactor, or a sodium­

void experiment in a fast critical assembly, the neutron

streaming in the voided channels leads to an enhanced

leakage, which is significant enough to necessitate a



tero

with heternrrQn sodium~in

for tency

alcu ation to

determine the sodium-void reactivi effect.

The present ve ion

t it is restri

of KAPE can handle plate and

to these one-dimensional cases

~geome

A more

accurate model of the cells e.g. subassembly cans

would re collision abili routines in two or even three

dimensions which are not available for KAPER4. Thus configu-

rations like in a subassemb an cells in

tical experiments or the s le absorber rodlets in a control

rod, cannot be treated explicit in KAPER4. However, in view

of the present ef to develop a European common cell code,

with the major activity going on in the Uni ted Kingdom and

in France, it is not anned to any more effort into KAPER

development. Therefore, it is expected that the present status,

which is described in this report, will still be valid in the
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ities and Limi s

KAPER4 i

tran t

cell code which solves the al

on with isotr c scattering in a collision

formalism. The buckl method is used to separate

the macros c reactor flux, and the micros c cell flux

The performs zero-dimensional ei calculations with

given group- and direction dependent buckl . This calculation

also s fluxes or adjoint fluxes and reaction rates in

the cell In addition KAPER4 s cell averaged cross

sections as weIl as anis diffusion coefficients

obtained by the method of Benoist. These cross sections can be

stored in the SIGMN block in the KAPROS system, and used

in whole-core calculations.

The code has its own cross section preparation routine. It reads

the data from a -group library, which also contains tabu-

self-shielding factors("f-factors"). The most frequently

used cross section set is KFKINR which has 26 energy groups.

Self-shielding is then calculated by means of a procedure ori­

ginally due to Wintzer /2/, which can be considered as an extension

of Wigner's equivalence principle.

The flux calculation uses exclusive macroscopic cross sections

obtained the KAPER cross section preparation routine.

I of macroscopic cross sections is not possible.

The self ielding calculation is not congruent with the one

used in the GRUCAL routine which is considered standard for

a casee Therefore to keep GRUCAL as a basis the

fol is generally used to prepare heterogeneous

cross sections: A GRUCAL run is carried out. In addition, KAPER4

is run for the rogeneous cell and also for the homogeneous

composition with atom densities. The difference between

cross sections the two KAPER runs is added to

the GRUCAL cross sections. With this "difference method", the

different KAPER self-shielding procedure affects only the actual

"heterogeneity correction". To avoid this situation, one

would have to introduce subgroup data instead of tabulated
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self-shield factors

In the flux calculation routine, the collision probabilities

are calculated with the total cross sections; in some cases,

it would be more appropriate to use the transport cross

section (see section 6.2). The collision probabilities which

are used to obtain the cell diffusion coefficients are, of

course, calculated with the transport cross sections.

The transport cross sections produced by KAPER4 are flux­

weighted over energy within an energy group. For whole core

calculations, current-weighted transport cross sections are

generally required, and produced by the GRUCAL code. This is

again a reason to use the "difference method" to produce

approximate values for the effective cell transport cross

section. In general, this method can be used in good approxi­

mation because the difference between the two weightings is

not large, provided the self-shielding factors were derived

in a consistent manner from the nuclear data base. Note,

however, that some of the f-factors in the frequently used

KFKINR group constant set are not consistent; the f-factors

for the transport cross sections were not obtained from the

same nuclear data base as those for the reaction cross sections.
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3 .

3.1 Basic Method

KAPER4 solves the collision probability equations for periodic

lattices composed of plate or pin cells. These equations are

based on the integral tr3nsport equation with isotropie scattering.

The buckling method is used to separate the microscopic cell

flux and the global macroscopic flux distribution in the reactor.

The derivation of the KAPER4 equations will be outlined here,

and the approximations made in this derivation will be discussed.

Note that in the last decade, several different ways to define
cell-averaged quantities (cross section, cell diffusion coeffi-

cients) were proposed in the literature; some authors point out

that there is a certain arbitrariness in the definitions, and

they summarize the relative merits and drawbacks of them /3,4/.

This discussion will not be repeated here. Instead, we follow

the observation in /5/, that there is a unique way of defining

cell-averaged quantities which preserves the true reaction rates,

the leakage rate out of the cell, and, of course, also the eigen­

value. Thus, the arbitrariness in the definition comes in only

when one has to decide on which kind of approximation to this

"exact" definition should be used. It seems clear that for

fast reactors, where the total heterogeneity effect is usually

small, higher-order corrections to this heterogeneity effect are

completely negligible. Thus, it is sufficient to use a low-order

approximation. It turns out that the KAPER equations, which were

developed already in 1972 /1/, represent indeed such an approxi-

mation, which is, however, completely adequate for fast reactor

cells.

For simplicity, the following derivation is carried out for

the monoenergetic equation, for a medium without scattering,

but with a given isotropie source density Q(r) /6/. Later on,

it is straightforward to identify the source density as the sum

of fission neutron source, scattering source, and a potential

external source. In addition, the extension to the energy-dependent

case is also straightforward.
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The re

( 3. )

where ) is the neutron flux and is the

total cross section in case of no scattering this is

also abs ion cross section sca flux and the

neutron current are then defined by

)

The in ation of eq. (3.1) over angle gives,if one observes that

the first term can be written div(~~),

( 3. 2 )

This is the differential neutron ba ce equation.

It is known from transport /6,7/ that the integral

transport equation,

( ) ( ( 3 . 3 )

is equivalent to the dif al equation (3.1) .p(r r)is the

obability that a neutron born at r collides (and is absorbed)

at r.

In addit

current

one can write a simi

3 I
T

I

on for the neutron

( 3 • 4 )

where P rl,r) is the current at r due to a unit source density

at r l Explicit expressions for p(r' ,r) and P(r ,r) are given

e.g. in /6/.
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c and macroscop flux is per-

me (see e.g. /5/) which is

sed on the ass

the ice (which may be a plate or pin lattice)

extends to infin in

the source densi has the fol space dependence

( 3. 5 )

q(r) has the periodici of the lattice and the
-+vector B has components B , By ' B , which are the squarex z

roots of bucklings in the three space dimensions.

One can now factorize the flux ~(r) the definition

e )

and arrives at the fol

) - '1')

inrPNr'~l equation

( 3 • 6 )

As al term in (3.6) depends on on the difference

r - the function (r) as the same periodicity as q(r), and is,

therefore, the riodie cell flux In case where the eell

q(r); i.e. if q(r)

is symmetrie,

center of a eell,

the core center r = 0, coineides with the

(r has the same phase as the source density

is real (r) is also real. This is the

case which is usual

the fol g

treated in the literature /3,4/. However,

ho a 0 if the eell is asymmetrie-

As is ous from (3 5) and (3 6), the buckling method

that a mathematically exact separation into

a macros flux ional to exp(i~~ and a microscopic

cell flux is possible This advantage outweighs, to our opinion,

the inc le problem of an "unphysical" extension of the equations

to s where the flux is negative /5/. Clearly the
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resulting equations are valid on in the interior of

extended macroscopic regions of a reactor, which contain

a large number of cells. To examine the behaviour of neutron

flux and reaction rates near boundaries of macroscopic regions,

Böhme developed the code GITAN and used it to study several

im~ortant cases in slab geometry /8/.

These investigations showed that the separation method is

surprisingly good except in the immediate neighborhood of

region boundaries.

Recent attempts to develop an improved separation procedure

resulted in the more involved "asymptotic" method /5/, which

avoids the basic difficulty of the buckling methode However,

the procedure does not seem to lead to any more convincing re­

sults than the simple buckling methode

The simplest way to proceed further is to observe that the

balance equation (3.2) holds for the flux ~ and the current

density J defined by eqs. (3.3) and (3.4). Integration over

an arbitrarily selected unit cell in the lattice gives

f01:;' ICT)"'("') +J0/3". J,4J-Jm =" Jd~ 61 {'tJ

cePt aeR cdt
Tb.e definition of the cell-averaged cross sections .r~

(y is the reaction type) follows immediately from this balance

equation

I ­
J

JoC::r r~eP

Jo/;' cl>
(3 • 8)

The effective cell diffusion coefficient in the direction x is

JJ. -
X-

Jol:l't" aJxlax

~: Sol~~
(3. 9 )

Similar equations hold for D and Dy z
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in the sense are in-

dependent of the choice of the cello Therefore, it is easiest

to use the central cello In princ le, the cell­

quantities could be evaluated from the definitions, us

computers. However, these equations are unnecessari complicated

because they involve a dependence on the bucklings which is so

weak that there is no need to include it in practical ons.

Therefore, one uses series expansions of ~(x) and J(x) and

retains only the lowest order terms.

The expansion for ~ is

and for J x

It is possible to derive different approximations to the "exact"

definitions (3.8,3.9) usingthese series expansions. The different

procedures, and the properties of the resulting definitions will

not be discussed in this report. The reader is referred to

/3,4,5/. Here it is simply stated that KAPER4 uses a B
2
-inde­

pendent definition of the cross sections, i.e.

f -
4-

(3.10)

In evaluating the diffusion coefficient, one finds that the

first term, j does not contribute because of symmetry reason.
xo

One obtains then, after same manipulations, which again will

not be repeated here
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The second term in the numerator a~Qn~s on the position

of the cell with reference to the "core center" r = 0,

because it contains the factor x. On the other hand, this

second term was shown to be small for fast reactor cases /3/,

and it is therefore neglected in KAPER4. Thus, the definition

used in KAPER4 i8

JcA ;. a'x~"
Jcl'!,.,. 9'0

(3.11)

This definition leads, after some additional manipulations,

/3,9/, to the well-known "Benoist formula" for a cell which is

(3.12)

composed of NR regions
Na..r 1Y.ep.'P. ·~/I·

3~ - .b~.1 ~ 4 f;t, "-
3 I 1J.<p.

a~,4 a a
where k is the direction (paraJ.leJ or perpendicular to the plates

or pins), and the P. 'k are the "directional" collision probabi­
J~

lities which were first introduced by Benoist /10/.

These approximations, though rather low order, are accurate enough

for the usual fast-reactor cell calculations. One has, however,

to make sure that the balance equation is still fulfilled.

The above equation (3.7) can be written

(3.13)

This equation is obviously fulfilled if the fluxes, as obtained

for the B2-free case, are multiplied by the factor

-r
(3.14)-I I:D~ 5;

~
to account for the losses of neutrons due to leakage. In KAPER4

this is achieved by calculating the collision probabilities

for B2 = 0, and then multiplying them by the above factor.

Thus, the spatial flux distribution is determined by the
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f

le 3. 4 ,

that the ori 1 definition (3 9 f

i coeff accounts the s called neutron

stre effe the enhanced out of a cell due to

non-uniform mate al distribution. Similar , eq. (3. 2) includes

the stre ef at least in an Note

defin the trans cross section as a s le flux-

volume over the cell is not consistent with the above

ivation . (3. 2) is a if the cell con-

tains on mater s with normal dens . However, this equation

ls if the lattice contains voided (or near voided) regions

which extend in two dimensions.

In this case, the ion in terms of the buckling does not

conve and the diffusion coefficient is infinitely large.

Then one has to use alternative methods, which are based on the

definition (3.9) retain the buckl dependence These methods

are not available in KAPER4; they are used in the stand-

a PARDON 9 for plate ces, and ARIADNE for pin

ices /5/

For in KAPER4, eq. (3 12) is written

the " diffusion coefficients D
jk

are

(3.15)

3. 16)

1

together

since the

averaging

of the flux

in the collision

ACYL forBENOIS for

llision ilities. However

needed in eq. 3.15) are not known the f

in the iteration in the

subroutine HETERO).

f

i
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Note that the Djk are only auxiliary quantities for computation,

which are not related to a "diffusion coefficient of region j".

Regionwise diffusion coefficients are defined and used in the

singularity option of KAPER4 (section 6.2).
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3.2 He---

To derive the multigroup equations the cell flux, one has

to include the energy dependence in the in al

for the zeroth order flux

1") ( 'd- (3.17)

The source density q(E,r) is composed of the fission source

and the slowing down source in the following manner

(3.18)

where A is the eigenvalue, x(E) is the fission neutron spectrum.

To obtain the multigroup equations for a fast reactor system, where

resonance effects are important, one usually postulates the

narrow resonance approximation and observes that the source density

q shows no resonance structure within this approximation. Then,

the straightforward procedure is to eliminate the source density q

between eqs.(3.17) and (3.18) and to write the multigroup equations

with the flux as a variable. If the unit cell is subdivided into

NRregions with index j, the resulting equations are

(3.19)

where P~. = <p .. (E» , and the effective self-shielded crosslJ lJ g

sections I g . are
XJ
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( 3 • 20)

The brackets < > indicate averages over energy.

The method to calculate the effective cross sections will be

described in Section 4.

The multigroup flux equations (3.19) are solved using the power

iteration methode Convergence is assumed when the following con­

dition is fulfilled in an outer iteration

1-
. 2­

(0<4.-1 )

o<ici i-'2..

where ai is the total cell fission source for the i
th

iteration.

As mentioned earlier, leakage is included by scaling the collision

probabilities in the following manner

7..
"'af t + r ~-k ~:L

Al
~ince the fluxes needed to calculate the cell-averagedquantities

tt and Dk (k = parallel or perpendicular to the plates or pins)

are not known apriori, the calculation of the scaling factor

is included in the outer iteration procedure in the solution of

the flux equations.

KAPER4 also solves the equations adjoint to eq. (3.19), which read

(3.21)

The adjoint fluxes ~:g are needed for the perturbation routine.
J
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3.3 Remarks on the Output Quantities

As mentioned earlier, KAPER4 performs cell flux (or adjoint flux)

and eigenvalue calculations. The KAPER eigenvalues are useful

quantities to compare the reactivity of different cells, or to

compare eigenvalues of a heterogeneous and a homogeneous case.

However, the more commonly used output quantities are the cell­

averaged macroscopic group cross sections, which are stored in

the SIGMN block, and can be used in a subsequent whole-reactor

calculation, either in diffusion approximation, or by an Sn code.

However, self-shielded KAPER cross sections, in the case of a

homogeneous composition are not equivalent to the results pro­

duced by the homogeneous cross-section processing program

GRUCAL, for two reasons:

- The method of calculating self-shielding in KAPER

is not equivalent to the formulae used to interpolate

f-factors in GRUCAL.

- The transport cross section produced by KAPER is ob­

tained by combining the appropriate partial cross

sections. These cross sections, as obtained e.g. from

the KFKINR data set, are flux-weighted in energy and

so are,then also the KAPER transport cross sections.

On the other hand, the transport cross sections usually

taken from GRUCAL are current-weighted.

Therefore, it has become customary to use the following

procedure: First, homogeneous GRUCAL cross sections are

produced, using smeared atom densities. Then, KAPER

runs are carried out, both for the homogeneous case,

and for the true heterogeneous cello The difference

of the two KAPER cross sections is then added to the

GRUCAL SIGMN block. This way, it is assured that the

"heterogeneous" and "homogeneous" cross sections are
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comoarable.

Alternatively, the GRUCAL SIGMN cross se

multiplied by the ratios of the heterogeneous homo-

geneous KAPER cross sections. This method is prefered

if either the heterogeneity correction is large, or if

different number densities are used in KAPER4 and in

GRUCAL. Further details are given in Section 6.3.2.

The SIGMN block contains transport cross sections

rather than diffusion coefficients. KAPER produces

either direction dependent or isotropie transport

cross sections for the SIGMN block.

Note that the heterogeneous transport cross sections

produced by KAPER4 are consistent w~th the effective

cell diffusion coefficients defined in eq. (3.12).

It is recomrnended to use the direction dependent

transport cross sections, STR PA for parallel and

STR PE for perpendicular (see Section 6.2) in whole­

core diffusion calculations.

In SN calculations without explicit treatment of ani­

sotropie scattering, either the isotropie transport

cross sections, or the flux-volume averaged transport

cross sections STR FV should be used instead of the

total cross sections.

In addition, KAPER4 produces reaction rate distri­

butions, and microscopic (regionwise or cell-averaged)

reaction cross sections.
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4. Resonance Self-Shielding

4.1 Rational Approximation of Reaction Coefficients

Fischer /1/ developed a method based on the theory of Wintzer

/2/ for the determination of effective group cross sections for

areaction type x of an isotope v in each region n of a uni t

cello These cross sections are used in KAPER4 for the calcu­

lation of collision probabili ties and the neutron balance as

required in equation (3.19). For the determination of effec­

tive macroscopic cross sections a weIl defined prescription is

given in equation (3.20). I t was assumed wi thout rigorous

proof that these Cross sections can be used for the calculation

of average values of collision probabilities P as weIl.mn

The task then becomes to find a good approximation for reaction

coefficients of isotope v in energy group g defined by Wintzer

/2/:

A = <xvmn

Cl (E)xv
P (Cl t (E),Cl O) >mn v

( 4. 1 )

where Cl tv (E) i s the total cross section of the isotope v,

Cl (E) i s the cross section of reaction type x of the isotopexv
v and Clan is the "background cross section" per atom of isotope

v due to the presence of other isotopes in cell region n. A1 vmn
i s wri tten for A calculated wi th Cl (E) = 1. The back-xvmn Xv
ground cross section Clan is assumed to be constant in energy.

The dependence of p on all background cross sections of themn
regions between m and n is indicated by the argument Cl O'

Weighting wi th the number of atoms in the region volumes Vm
multiplied by the collision density q and summation of (4.1)m
over all isotopes present in the unit cell yields the terms of

the right hand side of (3.20).
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1 self-shielding factors defined as

Cl (E

<0 > <------->

(E + (J

<------->

E) 4.4

i can i le - be c lculated

an stimate calculated usi full

S6 sec ions and a flat flux distribution in

rience has shown that the iteration pro-

isi densi does not calculated

sections si ficantly under this condition.

tted in KAPER.

shie

the whole eIl.

effec S6

is refore

The 1 si

.2 , c

x of

of

ss sections f reaction

Cl ,which are fairly inCle~)elnaen
n

be calculated as the ratio

i

ffecti

i



-20-

° =xvn
Im A1vmn Vm qm (4.5)

4.2 On the Choice of Parameters in the Rational Approximation

The accuracy of the fit (4.2)

NB a.
1

~ L

i=1 b. + °tv1

depends somewhat on the choice of the mesh points b.. An
1

approximation fairly independent of the parameters chosen can

be achieved by use of recommended parameters:

NB should be between 4 and 10, default is NB = 6.

b 1 should be of the magnitude of the fully shielded total cross

section, 0tvxft(oO=O). In KAPER4 it is set to the minimum min

(Otvxft(oO=O), 00n)' where n = 1,NR. If this value is < 1 barn

the lowest value b 1 i schosen to be 1 barn. The maximum test

cross section b NB is set to GAMxb1. It is recommended to set

GAM = 1000. For isotopes with very pronounced resonance peaks

a higher value of GAM may be more appropriate. The intermedi­

ate cross sections b. are equally spaced between the extrema
1

on a log-scale.

Wi th the recommended choice i t may happen that calculated

effective cross sections in regions with high 00 (e.g. regions

containing highly di luted isotopes) become larger than the

cross section calculated for thi s di lution °(0 On) or even

o(oO=~). In these cases the effective cross section in region

n i s set equal to the cross section calculated for °On' i. e.

about the infinite dilution cross section. A warning is print­

ed, if this enforced correction exceeds 1%.



increasing NB and GAM the number of warnings can be

for certain resonances, but usually the final result is not

altered. A general remedy which prevents this inaccuracy cannot

be given.

An example showing the influence of a variation of parameters

is given in Tab. 8.3.

The quantity EPS can be used to modify the approximation (4.2)

by subtracting EPSxp (b 1 ,00) from p (Ot '00) on the left handmn mn v
side prior to the approximation. Pmn(b1 ,oO) is a collision

probability calculated using b 1 as a constant test cross sec­

tion for isotope v. This ensured the smooth transition to the

homogeneous case for decreasing optical thicknesses in former

versions of KAPER. For KAPER4 this whole part of the program

has been newly coded. The transition to the homogeneous case

requires no particular provisions anymore, as is demonstrated

in the example gi ven in Tab. 8. 1. Thus, EPS = O. can be set

without significantly influencing the results.

Another modification of the program can be achieved by setting

EPS < O. In this case the background cross section 00 for iso­

topes is calculated using the potential cross section of the

isotope 238U and unshielded total cross sections for all other

isotopes (TYPE STOTW), as it is done in the cross section pre­

paration code GRUCAL /22/ for homogeneous mixtures. However,

the standard procedure in KAPER4 with EPS.GE.O. is the use of

the effective total cross section of 238U and of unshielded

total cross sections of all other isotopes for the calculation

of 00' Results of both options can be found in Tab. 8.3, too.
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5. Calculation of Collision Probabilities and Cell Diffusion

Coefficients

5.1 Collision Probabilities for Slab Lattices

The calculation of collision probabilities is still performed

as described in former reports /1/:

In a lattice made up of slab cells periodic boundary conditions

are assumed in the direction perpendicular to the plates.

Reflective boundary conditions have to be simulated by doubling

the number of regions. Infini te extension of the plates i s

assumed in two orthogonal directions (see Fig. 7.1).

The optical thickness x of a slab n of geometrical thickness
n

t and total macroscopic cross section SICT is defined as:n n

SICT xt .
n n

The optical thickness of all regions j between slabs m and n

is

j<n

1: x ..
J

j>m

Wi th the assumption of a flat flux distribution in regions m

and n the first flight collision probability of neutrons born

in m and colliding in n, P I becomes:mn

1

Pmn = {E3 (x T ) - E3 (X T+x m) - E3 (x T+x n ) + E3 (x T+x m+x n ) }

LX (5.1)
n

and



=

i al i of order k, defined s

o

2 exp(- ) dt for k~1

and o -1= (k-1) fork>1.

In KAPER4 al integrals are calculated from the func-

tion E1 x = -Ei (-x) (supplied by the library function MMDEI

of IMSL /11/) using the recursion formula

(k-1 ) x) = exp (- ) - x Ek - 1 (x ) for k>1.

For infinite lattices of optical cell width x the summationc
over all s n is carried out by the quadrature method

proposed Olson /1

Z

n=O

(x +x

i=4

~ L

i=1

exp(-xxki )

and are tabulated in KAPER4. The error of this formula

is claimed to be $10

For the calculation of directional collision probabilities for

direction K, P - as required for Benoist f s diffusion coef-mnK
ficient eq. (3.12) the function in eqs. (S.1) and (S.2)

is replaced by 3 x ES for the direction normal to the slabs and

by the function 3/2 ( -ES) for the direction parallel to the

slabs.

Again, Olson's formulas are used for the summation of P overmnK
all cel~s of an infinite lattice.
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The accuracy of each term in (5.1) is about 1x10- 5 using single

precision in (5.1) and double precision for the calculation of

the functions Ek . Experience has shown that this precision is

sufficient for most cell calculations in slab geometry. In

cases of very thin regions P can be calculated using anmn
approximation of Wintzer /2/ for E

3
:

i=7

E
3

(X) ~ E a.exp(-b.x)
l l

i=1

a. and b. are tabulated in KAPER, too. The error of this
l l

approximation is said to be of the order< 10- 3 for 0.002<x<2.

Using this approximation the summation of (5.1) over all cells

of an infini te lattice becomes possible in closed form. The

reciprocity relation is maintained and the transition to infi­

nitely thin regions is exact. This may improve the results

slightly, as is demonstrated in the example given in Tab. 8.1,

case NHOM=1.

The approximation of Wintzer is always used for the calculation

of p of eq. (4.2) in slab geometry needed in the cross sectionmn
preparation phase (see chapt. 3.1).
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5.2 Cylindrieal Geometry (Subroutine ACYL)

The subroutine ACYL ealeulates isotropie and/or direetional

eollision probabilities in eylindrieal geometry, i.e. for

pin lattiees, or for singularities. The eollision probabilities

are in turn used to ealeulate the eell fluxes (and adjoint

fluxes), and also the (isotropie or direetional) eell diffusion

eoeffieients. Note that the eross-seetion preparation part in

KAPER4 uses a different eollision probability routine, PMNBIC,

whieh is simplerbeeause it ealeulates only isotropie eollision

probabilities. However, the same methods are used in both

routines. Therefore, it is suffieient to develop only the

equations for ACYL in this seetion.

5.2.1 Capabilities of ACYL

The pin lattiee geometry is more eomplieated than the plane ease

beeause it is twodimensional. ACYL ealeulateseollision probabi­

lities using either of the following two approximations:

- eylindriealize the eell, and assume that neutrons leaving the

eell enter the next one, with an isotropie angular distribution

("white boundary eondition"). The aetual problem is thus redueed

to an artifieial one-dimensional problem.

Note that there is no differenee between a square and a hexagonal

lattiee, in this approximation.

- to imorove on the "white" boundarv eondition at an imaainarv.L. ..I. - - -- - - - -- - --- ------.J - - --..i.

eell boundary, the eollision probabilities in the irregularly

shaped eoolant ehannel (the "Daneoff faetor") ean be ealeulated

by an approximate method (the so-ealled "Sauer-method").

ACYL performs the following ealeulations:

*
The in-eell eollision probability Pij(probability that a

neutron born in region i eollides in region j of the same eell);
*

both isotropie and direetional Pij ean be ealculated. The

numerieal method developed by Carlvik / 14/ and by Kavenoky /15 /

is used.



-26-

a neutron born in

eell in the lattiee).

The eollision ility P. ,( ili
1.J

on i eollides in region j of

In the ~~Hu,Lieal eell approximation,

by the equation

s probabili is

(5 • 3 )

'*where P'b is the probability that a neutron eseapes from
1. '*

the eell where it was born; Pbb is the probability that a

neutron entering the eell traverses it without a eollision.

The equation for P, . ean bewritten
1.J

I :-; ..
* 1,):. .-p.t 'P. ~

7. . a dA. a (5 .4 )- .. +
AoJ -ta I'U:& 4z~~

.-h

where Vi is the volume, Li the total (or transpor~) eross

seetion of the region i. The eseape probability Pib is given

by(NR number of regions)
NR

t::; ~ 1. - .I 1',;;
3---1

Note that eq. (5.4) also holds for direetional eollision proba­

bilities. However, the flux impinging on the eell boundary from

outside is then assumed to have an angular distribution pro-

portional

path, and

axis) .

2
to ~k' where ~k is the eos between the neutron flight

thedireetion k (parallel or perpendieular to the

The (isotropie or direetional) "partial" eell diffusion eoeffi­

eients, defined by eq. (3.16) in Seetion 3.1, are also ealeulated.

However, the flux volume averaging required to obtain the

diffusion eoeffieient
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(5 5

is performed in the routine HETERO.

As an option, ACYL ealeulates Daneoff faetors for the outer­

most region of a eell (eoolant ehannel). The method by Sauer

/16/ is used for the isotropie ease. The anisotropie Daneoff

faetor ean be written as an integral. In ACYL, an approximation

to this integral is used whieh is valid for small optieal

thieknesses (i.e. for most fast reaetor eells).

5.2.2 Caleulation of the In-Cell Collision Probabilities

( S . 6 J

*
Carlvik /14/ and Kavenoky /15 / showed that the P .. , whieh are

1J
originally defined by a 6-fold integral, ean be redueed to a single

integration over Biekley funetions
~.2. ...

'P ~ = -j {(~ )t!lz,
A-1 11:

Cl If, ()

f (i. J =-i [/{,~ (1-1+1"01) -«':3 (1~1 +.{) - /{':/1where

( 5. 7 )

where Ki
3

is the Biekley funetion of index 3, and the t i ete.

are distanees,measured in free paths(see Figure 1). The diagonal

term is given by

( 5 .8 )
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. })-. (, ), () -
where

. )- ( 5 .9 )

The numerical integration from 0 to R. is carried out by Gauss
1

quadrature, using 2 times 3 mesh points in each range Rk - 1 to

R
k

(k <i). The Ki-functions are computed by subroutine functions,

which use the Chebysheff approximat10ns obtained by Gargantini
-7and Pomentale ;' 17 /. The accuracy is 0.3x10 or better.

This procedure is used directly for the "general" case, eqs.

(5.6, 5.7). Special cases will be discussed now.

Diagonal element, r. > 0
1

(5.10)

an inte1J~al

-~f
o

* -2 -3
For the pin cells of a fast reactor, P .. may be as low as 10 -10 .11

-Thus, the integral in eq. (5.8) is negative, and compensates most

of the first term, so that the accuracy becomes poor. It was found

that better resul ts are obtained if the "One" in eq. (5.8)

is represented as

where y~ = R~ - h
2

.
1 1

In ACYL, the term (5.10)is cornbined with the second (integral) term

in eq. (5.8).
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region, Z _ 0 (e.g. voided channe

In KAPER4, macroscopic cross-sections are not allowed to be zero.

Therefore, the distinction of a number of different cases, which

was worked out by Kavenoky for zero cross-sections, is not neCffi-
sary. To keep the routine ACYL simple, the following approach

(5.12)

to handle small cross-sections was adopted.

-4 -1First, it was found that for cross-sections > 2x10 cm ,eqs.

(5.6)and (5.7) give sufficient accuracy. To improve the accuracy

somewhat, and to make use of the rather goodapproximation in the Ki­

function routines, eq. (5.7) is evaluated with double precision

in ACYL. The user should, however, make sure that a small amount

of material (Z ~ 2x10- 4 ) is smeared in the voided region.

The accuracy for the diagonal element, eqs. (5.8 - 5.10) ,is, how­

ever, worse. Therefore, the expression (5.8) is split in two terms.

The first term

~i-1

== ;, Jrif.,[ZIJi-!i-<}+ ~ (/{'3 (U;..,) +Iftj(2i)-2k'il.. +,(.V1
(5.11 )

~ 0 1j
refers to the neutrons which go through inner regions (assume i > 2).

It is calculated numerically, like the off-diagonal elements.

The second term refers to neutrons which collide in region i with­

out leaving it. It can be written as

1l,'.,
-p. ~ (2J = 2.r:: J01"" (d' -1ft' ) 2/(,,' CO)

-tA, t 04 -1 1
~

(}'Ki

+ 4- T;. jJiv Itf ,?. k,,' (0)
1/.. (j"''''

"l, ~:-f
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Itcanbeshownthateq. (5.12) is to

where ~ is the chord length in region i. For an infinite hollow

cylinder, the second moment is given bv

F -;(!;Z- -= -~_l_)-_2_{1_fJ.=--2_)E_(J_1.)_+_2._{1__J,_2_}k_{1. _
:e 3 (1-~ )

(5 . 13 )

where k = R. 1/R., and E and Kare the complete elliptic integrals
1- 1

of the first and second kind /18/.In ACYL, the function (5.13)

is approximated as folIows:

For k < 0.7 by the series expansion

F=
-0.Tri -,./4?cf1J2.+ 6. r.r~ ~O.1'ff3Jf'+o.D1i~~~

2 -/&/')(1-"&)
(5.14)

For k > 0.8 by the asymptotic expression

(5.15)

For k between 0.7 and 0.8, a linear interpolation between eqs.

(5.14) and (5.15·) is used.

*
These equations for P .. are used if the optical thickness of

11

region i is less than 0.001.
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Thin Cel

To make sure that reasonable results are obtained if KAPER4

is used in the "quasi-homogeneous" limit, i.e. cells

the following approximations are used if the cell radius Ls less

than 0.04 cm:

Diagonal elements:

_~i [, [F(~)+r; (i.J .
:2 '" A.

(5 • 16 )

In this equation, F2 is the first integral in eq. (5.12), it

is given by

Z(2+--')

~ -:::: 1- (5.17)
3 (/f+-J.)

and D. 1 is the transmission probability through the inner
1-

regions «i), which is represented in the limit of thin cells as

a product of Wigner rational approximations for each region

1
1/+1,[·

J J
(5.18)

The off-diagonal elements (j>i) are approximated by

1
(5 1 9)
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Probabilities

As far as integrals over Ki-functions are involved , it is easy

to derive the directional collision probabi ties. One has to

replace

For an optically thin region, one has to multiply p~~2), which
11

is defined by eq. (5.12) ,by the "anisotropy factor" (0.75 for

perpendicular, 1.5 for parallel). For thin cells, all the P~.
- 1J

are multiplied by these factors.

5.2.3 Lattice Collision Probabilities, Cell Diffusion Constants

The evaluation of the eqs. (5.3 - 5.5) is straightforward, once

the in-cell collision probabilities are available. One comment

should be made:

The physical relation

(5.20)

is no longer exactly satisfied if the cylindrical-cell approximation

(5.3) is used.

5.2.4 Use of the Dancoff Factor

In a hexagonal or square lattice, the coolant channel has an

irregular shape, and the approximation as a cylindrical shell is

artificial, especially if the channel is voided. Alternatively,

one can use the Dancoff factor r, which is defined as the pro­

bability that a neutron entering the coolant channel makes a

collision without re-entering a fuel rod.
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Exact calculations of the Dancoff-factor are possib

rather cumbersome. In ACYL, a fair le but rather accurate

approximation, suggested by Sauer and described in detail in

Ref. /16/, is used.

In this case, the equations (5.6) etc. are used only for a

"reduced cell", which consists of the regions 1 to NR-1. The Dancoff

factor is defined for region NR(the coolant channel). If pib is

now the probability that a neutron born in i escapes from the

reduced cell, the equation for the lattice collision probabili­

ties is (i,j ~ NR-1)

*- rp. +
"J ~ r +(1- r)[4 ~ Li ~:

"
(5.21)

where Sb is the surface (per unit height) of the reduced cello

The problem of calculating a directional Dancoff factor, r. or.....
~,is more involved.

The appropriate definition is given as the collision probability

for neutrons entering the surface with an angular distribution
2

- ~k' where

~k is the angle between the axis and the direction of the incoming

neutron. The definition is then

~- (5.22 )

S is the surface, (n~) the cas between the surface normal and the

incoming neutron.
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f k in a manner simi

the latter i8 based on

to Sauerls method, one

the chord

distribution function, f(2), by a decaying exponential function,

shi by a length t = T2 • To calculate f k , it is more appro­

priate to assume an approximation for the distribution g(p),

where p is the projection of the chord length on the plane per­

pendicular to the pins. The f k can then be written

qO

IJ. =1- ;; "1 ~ ) ki{ (I1)
()

00

~ =: 4- : J"J J1i;[K'.l (ri) - ""i (rS~
()
vP

r =4-.!t.JJ(JQ((J]t{i (1'1')
" ~o 7( ~ (J J .3 J

o

( 5 • 23 )

It follows from these equations (and of course also from the

definition (5.2.2)) that the relation

does not hold. One expects, therefore, that the corresponding

relations between the P ijk , which hold if the Pijk are calculated

exactly, are not preserved in the present approximation.

It is easily seen that the integrals (5.23) cannot be evaluated

analytically, if g(p) is approximated by a decaying exponential

function.However, coolant channels in fast reactors are usually

optically thinG Therefore, an expansion for small 2= is of interest
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8 2-=-
ß 3
g r )= -
3

If-
3

(5.2 4)

Using Sauerls approximation, the faetor F is given by

-:::1-
2­

+­
:l.

where T is the "geometrie index" defined by Sauer /16/.

The expressions (5.24) are accurate enough for the sodium ehannels

in a fast reaetor (and, of course, for voided ehannels). However,

to make sure that no negative values ean be produeed, the follo­

wing equation is used in ACYL for the differenee 6f k

-1 3
.4 t;::: (- - - (5.25)- ZA..JO

where ,J.-:::
-

J. =11

The series expansion of (5.25) is eonsistent with the equations

(5.24) •
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5.2.5

Caleu ions of the isotropie and direetional diffusion eoeffi­

eients were earried out for the eell of agas eooled fast breeder

reaetor, using a two-region ealeulation. The eell geometry is

determined by the pin radius, a = 0.37 em, and the piteh of the

(hexagonal) lattiee, s = 1.08 em. The equivalent radius of the

eell is R2 = 0.56702 em. Both the eylindrieal eell model (with

white boundary eonditions), and the Daneoff faetor method were

used.

Table 5.1 shows the results for a voided eell, with a fietitious
-1low eross-seetion, 0.0002 em , of the eoolant ehannel. The

eross-seetion of the pin was varied from 0.1 to 1.0 em- 1 .

While the isotropie diffusion eoeffieients obtained with

the two methods are fairly weil eonsistent, eonsiderable

differenees exist between the direetional diffusion eoeffieients.

In eaeh ease, 6D is smaller, and 6D larger with the Daneoffr z
method, than with the eylindrieal eell methode

These differenees refleet the errors in the eell method, where

a given angular distribution is assumed for neutrons entering

a eell, or the fuel region. This assumption, apparently, is

not weil justified for the direetional eollision probabilities.

The physieal relation

is not fulfilled for the Daneoff methode The reason, obviously,

is again that the assumed angular distribution is not eorreet.



Nevertheless, the eell model s a simple method

to obtain an estimate for the anisotropie dif ion

eoeffieients in voided lattiees. For more aeeurate eal­

eulations (whieh are beyond the seope of the eode KAPER4) ,

more involved methods should be used. Note that a routine

whieh uses a B2-dependent method for an infinite lattiee

(ARlADNE) is available at KfK /5/.

Table 5.2 shows the results for variable eoolant eross-see­

tions, 62 , assuming that 6 1 is eonstant. It is interesting

to note that the ratio ~D /~D seems to have a eharaeteristiez r
value for eaeh of the two methodsj this value ehanges rather

little as the eoolant eross-seetion inereases, and the hetero­

geneity effeet beeomes smaller.
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Local Perturbation of the Unit Cell

In many instances measurements in a critical assembly involve

a disturbance of the repeating unit cell of the assembly. For

example, a portion of a cell may be removed for the insertion

of a channel in which reaction rates are to be measured with

chambers, or in a reactivity worth measurement, a low density

plate of inert material may be inserted between two plates of

the cell at the position into which a sample is to be placed.

In both of these cases the periodicity of the unit cell is dis­

turbed. We shall call this cell containing the local perturbation,

including the surrounding unit cells in which the flux is signi­

ficantly disturbed by the perturbation, a perturbed cello As this

is a very practical problem of interest to the evaluators of

experiments performed in critical a~semblie~ a capability of

solving for the flux, and therefore reaction rates, in such a

situation was built into the KAPER4 program, for the slab geometry

case.

To find the flux and adjoint distribution in the perturbed cell

it is assumed that the change in the assembly (introduction of

the perturbed cell) is sufficiently small as to not affect the

criticality of the assembly nor the spectrum several mean free

paths from the perturbed cell position. With this assumption the

flux and adjoint distribution in the perturbed cell can be ob­

tained by solving the integral transport equation, eq. (3.19), as

a fixed source equation. The source is the first-flight leakage

(uncollided neutrons) from the surrounding normal unit cells

several mean free paths removed from the perturbation, or in

the case of the adjoint equation, the importance a perturbed cell

neutron has upon escaping from the perturbed cello

To write the equation for this case it is sufficient to formulate

the equation from physical processes. For example, eq. (3.19) can

be simply derived by equating the total collision density in a

particular energy group and region to the sum of the contributions

from all energy groups and regions from which it is possible for

neutrons to come.



-39

cell given above,

cell of

U.UUQ.L ies, as

boundarie around the

We have located these

definition of thea resu

Le us

the assemb

where the is

on of the normal unit

trum of the assernb

ous ca

librium

From a

at a

reestabli

cell we have, fore, the f solution outside these imagi-

nary boundaries Setting up the collision density balance within

the boundaries we have the contr ion of those neutrons

which a remain within boundaries and those that come

from outside. Due to the particular ation of the imaginary

Dounlaalries there is no contribution to the collision density

of neutrons are the perturbed cell and returning

after one or more lisions as these are already included in the

source from outside our boundaries. Our equation would then

as foliows:

y ( 6 • 1 )

where is the probability thata neutron from region i suffers its
j

first collision in region j while ~emaining within our imaginary

boundaries The fluxes and cross sections explicitly written in

eq. (6 1) are defined for the regions that compose the perturbed

cell Therefore the first term on the r t-hand side of eq.(6.1)

represents the contributions from within our imaginary boundaries

and the term (q1) the contribution from outside the boun-

daries. The source term q3 has an appearance similar to the first

term in eq.(6.1) except that the collision probabilities have a

dif finition. We may write the source equation as

( 6 • 2)
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where E .. is the probabili that a neutron in a i outsidelJ
our boundaries suffers its first collision in a region

j inside the boundaries. The cross sections and fluxes in eq. (6.2)
are defined for the normal unit cell and are available from a

previous calculation. Therefore q~ can be calculated directly
J

and used in eq. (6.1) to solve for the flux within the perturbed

cell (inside the imaginary boundaries) .

The solution of both eq. (6.1) and the corresponding adjoint

equation are carried out by the power iteration method as

briefly outlined in Section 3.2.

6.1.2 Heterogeneous Perturbation Calculation

For the calculation of heterogeneous reactivity worths perturbation

theory is used. Perturbation theory offers an advantage for the

calculation of small changes in a system. this being that the

change in the system is expressed directly rather than being

the difference of two nearly equal quantities as one would have

by calculating the eigenvalue separately for the perturbed and

unperturbed systems. Therefore the heterogeneous fluxes and

cross sections, obtained as described in the previous sections,

are used in aperturbation theory formulation of the integral

transport theory equation to obtain reactivity worths of small

changes introduced into the assembly core.

However, since the flux depression, or peaking, in the sampIe

can be as important an effect as the self-shielding of the

sampIe cross sections the exact form of the perturbation equation

is utilized in the KAPER4 program rather than a first-order form

as is commonly employed in perturbation programs. Therefore

formulating the perturbation equation with the integral trans­

port theory flux equation (representing the perturbed state) and

the adjoint equation (representing the unperturbed state) one

obtains
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1
-

j (6 • 3 )

+/L [ er y~An.,

"
.

fl, d

where p = -0 AI Aland the region index summations are over all

regions where the perturbation operators are non-zero. The per­

turbation operator, in general oN, is defined as (N'-N) where

the prime denotes the quantity defined in the perturbed state.

In the perturbation equations we will represent the fission

souree as a sum of contributions (index n) from eaeh fissionable

isotope present. The denominator of eq. (6.3) is

(6.4)

We may rewrite eq. (6.3) if we use the following form of the

perturbation operator:

In addition, we mayaiso use the relationship between the souree

importanee funetion ~:k and the eolliding neutron importanee

f t ' +kune lon ~.
J

Introdueing these relationships into eq. (6.3) we can write the

results as, after some rearranging,
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where Lg , is the total absorption cross section in region i
al

and energy group g.

This equation has a form that renders itself to easy physical

interpretation. A source neutron, from a fission or scattering

reaction, is weighted by the source importance function while a

colliding neutron is weighted by the colliding neutron importance

function. The last term in eq. (6.5) accounts for diffusion

effects.

The form utilized in the KAPER4 program is, however, slightly

different than eq. (6.5). We can rearrange the equation to obtain

the following results
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The on eq 6.6

can be identified as the norma

is that the first three terms

ab scatte, and

fission terms.

The flux in eq. (6.6) is obtained with the procedure

exp earlier in this Section. In this case the disturbance

in the unit cell is the inserted reactivity sampIe. By utilizing

eq.(6.1) to find the flux in and around the sampIe one accounts

also for the perturbation, due to the insertion of the sampIe,

in the sampIe environment.

Since the KAPER4-program is a lattice program the denominator

of eq.(6.6) can not be calculated for the entire assembly core

and reflector. The calculation of the denominator, or normali­

zation integral as it is commonly called, is best accomplished

with a multidimensional flux program. Therefore the procedure

selected for the calculation of the denominator is as follows

where



-44-

and

In these equations it is assumed that the effect of the reacti­

vity sarnple in the calculation of the normalization integral

is negligible. Therefore the perturbed fission source is replaced

by its unperturbed value. For small-sarnple reactivity worth,

for which the program is designed to handle, this approximation

is quite valid.

The factor DNOR is calculated for anormal assembly cello F(o)

is the norrnalization integral normalized by the neutron and im­

portance source at the center of the assembly. The integration

in F(o)is over the entire assembly core and reflector. This

factor is obtained in an independent calculation, such as a

whole-core two-dimensional diffusion calculation, and is used

as input data to KAPER4.

6.2 Option for the Diffusion Coefficient of a Singularity

The singularity option is designed to obtain cross sections and

diffusion coefficients which are averaged over a core singularity,

e.g. control rod followers (with or without sodium) or absorber

rods.

For the KAPER4 calculations, the singularity must be cylindrical­

ized, and surrounded by a homogeneous region of core material

(region NR) .The reaction cross sections are then simply flux­

volume-averaged over the (NR-1) regions of the singularity.

The only quantity which is treated in a different way than in

standard KAPER4 is the diffusion coefficient. It is known that
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ffusion great overestimates the akage in low-densi

regions of a core if the diffusion coefficient is defined as

1/(3ztr) /9. 19/. Therefore, an alternative definition of

the diffusion coefficient is used in this option, which remains

valid if the material densi in the singularity is very low

(e.g. voided control rod folIower) .

This definition was proposed by Rowlands and Eaton /19/. For

the use in KAPER4, it was extended to a multiregion configuration.

The equations for the diffusion coefficient of the singularity

are derived in the following section. Then, the validity of

the flux-volume averaging procedure for the homogenization of

absorber rods is discussed. In a further section, comments on

the use of this option for low-density singularities, and for

absorber rods are summarized.

Calculation of the Effective Diffusion Coefficient for a Singu­

larity

When defining an axial diffusion coefficient for a core singu­

larity, one should make sure that the definition remains valid

for low-density regions, e.g. a voided control rod folIower.

The method available in KAPER4 is based on a suggestion by

Rowlands /19/. It was, however, necessary to extend the method

for multiregion configurations. Assume a cylindrical supercell,

(NR regions) where the inner NR-1 regions are a cylindrical re­

presentation of the singularity, and the outermost region con­

sists of homogeneous core material. One calculates the axial

cell diffusion coefficient from the Benoist formula

(6. 7)
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t cross sections ~ " and
J

P .. /10/. Note that this
JlZ

a good approximation even forbuckling-independent equation is

with volumes I fluxes ~.,
J

directional collision probabilities

voided singularities, because no planar void regions occur

/19, 20/. Therefore, using eq. (6.7) for singularities is

consistent with treating the leakage in the KAPER4 cell cal­

culations.

As was shown in /9/, one can uniquely assign an axial diffusion

coefficient to region j of the singularity,

( 6. 8)

which gives the axial current when multiplied by the flux gradient.

Clearly, D
z

in eq.(6.7) is the flux-volume average over Dj,z.

The quantities(6.8) are used in the singularity option because

they can be meaningfully averaged over parts of the supercell

Note that the quantities used in the cell version,

( 6 . 9 )

are simpler to use, but do not have a direct physical meaning.

set DN = 1/(3~NR)' and attempt

1, ... ,NR-1) such that the total

Following Rowlands /19/, we now

to determine effective D~ff(j =
J

leakage in the supercell is preserved; that is

(6.10)
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rement

(6.11)

Note that the term in sis can be written

--

and, observing that

one has

3 3
(6. 12 )

It is now obvious that the requirement (6.11) is fulfilled if we

set (j < NR-1)

( ) (6.13)
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In this ssion, D. re s to the true axial current in
JZ

on j whereas the second term compensates for replacing

DNR,z by 1/(3L NR). Note that (6.13) holds also if region NR ex­

tends to infini ty. In the case of a two-region cell, (6.13)

reads

(6.14)

This expression is quoted by Rowlands for the special case

when the f luxes are equal, i. e. ~ 2 = ~ 1 .

Note that P 12 ,z is calculated by the collision probability routine

ACYL, which is incorporated in KAPER4. It may be useful to quote

a few results for the case of a low-density channel studied by
-1

Rowlands, namely r 1=5 cm, Z2=0.223 cm , Z1 variable. It is

assumcc" that cD = <jJ 1 •2

L1 D Drad 1/3L 1z

0.002 6. 12 4.60 166.7

0.006 5.83 4.49 55.5

0.0154 5.28 4.25 21 .6

0.05 3.94 3.50 6.67

0.0898 3.00 2.83 3. 71

0.3 1 .079 1 .067 1 . 1 1

0.4 0.737 0.695 0.833

The table shows that simple diffusion theory (D = 1/3Z) greatly

overestimates the axial leakage in the channel if the density is

low. Furthermore, the axial diffusion coefficient is also over­

estimated if L 1 > L2 ; this is obvious from eq. (6.14). According

to Rowlands /19/ there are several possibilities to define the

radial diffusion coefficient. On the other hand, radial leakage

in the channel is much less important than the axial leakage,

especially for a channel in the core center. Therefore, no special

attention was given to calculate D ; rather, the above equations
r
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were used to find it, with the axial direction z rep~a~cu

the radial one, r.

Comments on the Homogenization of Absorber Rods

m,he comments in this Section are based on work by Rowlands and

Eaton, which was presented at a meeting on homogenization at

Lugano /21/. As the proceedings of that meeting are not widely

available, the important findings of the paper will be summarized

here.

The purpose of the procedure is to produce averaged cross sections,

of the absorber rod assembly for use in whole reactor transport

(e.g. SN) calculations. Note that the diffusion approximation is

less weIl suited for the whole reactor calculation, and involves

additional errors, because of the large absorption cross sections

of the singularity. The homogenization is necessary because usually

the absorber region is surrounded by a sodium-steel-region, and

it is not feasible to resolve the two regions in a whole-core

calculation. The fine structure of each of these regions is

neglected in this procedure.

As usual, Rowlands and Eaton treat a supercell which consists

of the absorber, the structure region, and a surrounding core

material region. They observe that the reactivity is preserved

in the homogenization procedure if the cross sections are flux­

adjoint-weighted in the following manner.

I-
j olS,.. <Pu. (T) [C'1) rp; (T)

JcJ.\- o/u.f't} q,; ("/ J

(6.15)



-50-

where the flux ~ re to the cell with the fine structure
u

representation, while the adjoint flux ~; must be calculated

with the cross sections of the homogenized cello These cross

sections are not known apriori. Therefore, an iterative proce­

dure is necessary if one wants to carry out the averaging accord­

ing to eq. (6.15). Rowlands and Eaton used an sN-code to perform

this iteration in one dimensional cylindrical geometry. They

assume isotropie scattering. The data are given in Table ~.

The important results are: If the atom densities are simply

averaged over the volume, the reactivity effect of the con-

trol rod is overestimated by 15 %, while the absorption

rate (region 1 plus 2) divided by the fission rate is overesti­

mated by 13 %.If flux-volume averaging of the cross sections is

used, the error reduces to about 5 % in the reactivity, and 4 %

in the reaction rates. This method can be considered as the first

step of the iterative procedure. It corresponds to assuming the

adjoint flux in eq. (6.15) as constant.

While there is still a systematic error, it is significantly re­

duced as compared to the simple smearing of the atom densities.

Note that the fluxes are certainly not preserved in the homogeni­

zation procedure.

In the light of these findings, the KAPER4 method can be appraised

as folIows:

Clearly, a collision probability code is equally weIl suited for

homogenization as an SN code, with isotropie scattering. Thus,

the KAPER4 method (flux-volume weighting) is equivalent to the

first step discussed by Rowlands and Eaton. As the results of

the test example indicate, the error is expected to reduce to

about one third as compared to the simple volume averaging. Thus,

the procedure is certainly worthwhile, though there is a residual

error. The complete iteration procedure, which woul.d reduce the

error to zero, is not possible with the present version of

KAPER4. Note that according to eq. (6.15) the radial transport

cross section should be flux-weighted in spacei it is this cross

section which determines the radial diffusion into the control

rod.
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three different

s for each region,

cross section (or diffusion

of KAPER4

s of

ariThe s

constants D = 1/(3Z tr

transport cross section, STR PE

transport cross section, STR FV

STR PAt cross section,trans

- f

- axial (parallel)

- radial

STR PA is the effective t cross section calculated from

eg. (6.13). It is directly connected with the axial neutron

leakage.

STR PE is calculated from an eg. (6.13), however, the ~ial

collision probabilities, P'N ' are replaced by the radial ones,
J Z

PjNR . This cross section describes the radial leakage in an

infinite array of supercells.

STR FV is simp the flux-volume averaged transport cross section.

For sity singularities (followers with/without sodium),

it is obvious that the axial trans cross section, STR PA

should be used. There is, however, no obvious definition for

the radial tran cross section; in /19/, several possibili-

ties are discussed, it is observed that this guantity is

not very important for a singularity at the core center. It is,

therefore, recomrnended to use STR PE, which gives the correct

leakage for singularities in a flux gradient.

For absorber rods, the s on is somewhat different. The ex-

sion for the 1 leakage, eg. (6.13) in the two-region case,

was from the condition that the axial leakage from the

supercell, calculated according to Benüist, is correctly des­

cribed if the singularity is assigned the diffusion coefficient

D~ff, while the core environment has1/(3Z tr2 ) .While this eguation

was derived with a low-density singularity in mind, it is still

correct for an absorber singularity. However, the diffusion con­

stant D~ff can be negative in the low-energy groups, where the

absorption cross section is large. This is seen imrnediately from

eg. (6.14), if one assumes Z1 > Z2' and ~1 < ~2. The physical reason
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is that the abs to a reduction of the axial

current in the core . Thus, the diffusion constant

/3Z of the core region may be too , and must be corrected

by a negative "effective" diffusion constant of the absorber

region.

While this is physically correct, the use of negative transport

cross sections in neutronics codes is inconvenient. On the

other hand, in SNR-type cases, negative cross sections are ca1­

culated only for low-energy groups, where the leakage is com­

pletely negligible. Therefore, KAPER4 does not apply this model

any more if the cross section becomes negative; rather, the

flux-volume averaged transport cross section, is then used.

The user has two options for the axial leakage:

STR PA, which is based, over most of the energy range, on Rowland's

model /19/, but the value in the low-energy groups may not be

consistent with it. Thus, if consistency is an important point

(even in energy groups where nothing happens), or the spectrum

is unusually soft the user can choose STR FV instead of STR. PA.

For the radial leakage,one should use the cross section STR FV,

which describes the reactivity effect associated with the intra­

cell neutron transport correctly. The reason is that the intra­

cell leakage (from the core region into the absorber) is much

more important than the global radial leakage, in the case of

absorber rods. This point was not realized at KfK until recently.

Therefore, earlier KAPER calculations for absorber cells fre­

quently used STR PE for the radial leakage in critical assemblies

simulating an SNR-type reactor /23/. To assess the magnitude

of the error due to this point, a comparison calculation was

carried out.

For a shim-shutdown rod of the SNR-300 (RTE, absorber part),

KAPER4 calculations were carried out, where the control rod

was surrounded by an 8 cm thick region of core material, C1.

Both aheterogeneous and a homogeneous representation of the

control rod were used.

In addition, one dimensional diffusion calculations were per­

formed in the same geometry, with cross sections prepared by
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resulting keff , using either STR FV or STR PE

Heterogeneous RTE

Homogeneous RTE

Heterogeneity effect

STR FV

0.969204

0.944749

0.024455

STR PE

0.969154

0.944749

0.024405

The calculated heterogeneity effect is nearly the same.

Therefore, the earlier calculations with STR PE are still

valid, although the theory suggests that STR FV should be used.

This section is concluded with a final remark: With the singula­

rity option, one should preferably use the KAPER4 cross sections

directly in a whole-core calculation, rather than starting Qut

from GRUCAL cross sections, and applying a heterogeneity correction

("KAPER heterogeneous minus KAPER homogeneous") to them.

The reason is that the case "KAPER homogeneous" is not easily

obtained for a singularity. It must be comparable to GRUCAL,

except for the different treatment of resonance self-shielding.

The best possible way to obtain self-shielded cross sections

for this case might be an arrangement where the innermost absorber

region is surrounded by several regions of the same composition.

Then, the cross sections of that innermost region are practically

only influenced by this particular composition, and may be used

as "quasi-homogeneous" data. However, as mentioned above, it is

preferable to avoid the "difference method", and to use the

KAPER cross sections directly in the SIGMN block.



6.3

6.3.1 on Rate Edits

For the c son of experimental data with cell calculations

averages of reaction rates, i. e. neutron flux mul tiplied by

effective cross sections, over some regions of a unit cell or

the le cell volume are required. For that purpose a variety

of averaging procedures is provided in KAPER4. The options

available are described in 7.4.

6.3.2 Combination of Corrections for Heterogeneity

Repeated application of heterogeneity corrections on a given

group cross section set originally created in a GRUCAL-calcu­

lation /22/ may be desirable for the approximate treatment of

complicated problems of heterogenei ty, e. g. the successive

treatment of the heterogenei ty of a pin cell and of a fuel

element wrapper enclosing several of these pin cells. In such

cases it may be incorrect to apply repeatedly the formula

L =1: +1: -!corr. uncorrected KAPER heterogeneous KAPER homogeneous
(6.16)

because of small differences in the number densities to be used

for the calculation of the homogenized super-cell with GRUCAL

and the KAPER4-calculations for the heterogeneous simple unit

cello An alternative is provided for the heterogeneity cor­

rection in such cases, which can be used instead of eq. (6.16).

By choosing the input parameters MSIG,MCHI < 0 (in 7.11.5) the

correction formula automatically used in the data manipulation

process SIGMUT becomes

Lcorr . orrectedxEKAPER heterogeneous/LKAPER homogeneous
(6.17)

For small corrections in simple one-dimensional geometry eqs.

(6.16) and (6.17) yield the same result to first order, in

cases of pronounced heterogeneity the application of the cor-
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rection procedure becomes questionable in any case. (6.17)

can be applied if number densities used in the KAPER4-calcula­

tions are not in complete agreement wi th those used in the

GRUCAL-calculations.

If a region of a reactor is made up of uni t cells of several

different types, e.g. a mixed pin cell lattice, a heterogeneity

correction can be made by repeated application of eqs. (6.16)

or (6.17) with fractions only of the heterogeneity correction

calculated for each type of cello Appropriate factors F for

microscopic and macroscopic effective cell cross sections, for

the diffusion coefficient and for the fission spectrum are

input (7.11.5, K7A). The sequence of corrections to be applied

to a GRUCAL group cross section set in the case of a lattice

composed of cell type 1 (fraction F1) and cell type 2 (fraction

F2) may be:

L = LGRUCAL + F1xEKAPER F1xEKAPERcorr.1 het.1 hom.1
L = E + F2xEKAPER F2xEKAPERcorr.1+2 corr.1 het.2 hom.2

(6.18)

However, it may be necessary to account for additional

restrictions prior to these corrections: The requirement of

almost identical average neutron spectra in both types of unit

cells of a mixed pin lattice can - as an example - be dealt with

in an approximative manner by surrounding each type of unit

cell by a large sea of homogenized composition already in the

KAPER4-calculations. For corrections according to eq. (6.18)

the averaging of cell cross sections in the KAPER4-calculations

is then confined to the regions of the central unit cell with

group fluxes of the super-cell taken for normalization (see

7.4.2). The validity of such approximations is not subject of

this report but has to be studied by the user in each case.

6.3.3 Unit Cells Containing Moderator

In the latest version 1.5 of KAPER4 upward scattering in energy

is permitted. It has been used for the calculation of tight



lattices of advanced pressurized water reactors current

investi But it should be in mind that some approx­

imations inherent in KAPER4 may limit the licability of this

code:

Scattering i s assumed to be isotropie in the laboratory

system. This is certainly a poor approximation for colli­

sions of a neutron with hydrogen. A qualitative indication

of the error introduced this approximation can be

obtained by calculating the collision probabilities using

the transport cross section Lt (STR) instead of ther,g
total cross section Lt (STOT). For reasons of consistency,g
the within group scattering element L (SMTOT(g~g» has

s,g~g

to be modified in these cases, too:

I ==> L - I + L
s,g~g s/g~g t,g tr,g'

This substitution may yield L < 0, which is tolerated
s/g~g

by the program. For the calculation of the diffusion coef-

ficient and L t anisotropie scattering is alwaysr,g
accounted for by the usual transport approximation.

In the example given in Tab. 8.3 the influence of the sub­

stitution of Lt by Lt has been calculated for the unit
, g r I g

cell of an advanced PWR. It is negligible compared wi th

other uncertainties of the calculation, e.g. the choice of

the background cross section in the cross section prepara­

tion routine. Thus, although isotropie scattering is a poor

approximation i t turns out that i ts influence on k and
00

keff is very small.

• Some approximations in the cross section preparation route

are valid for narrow resonances only. These may be inade­

quate in cases where resonance widths are not small com­

pared with the average energy loss in a collision or where

the resonance energy is close to an energy group boundary.

In such cases the validity of the approximations has to be

scrutinized.
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7. Input Description of the KAPROS module KAPER4

7.1 General Remarks

KAPER4, Version 1.5, is a KAPROS module /24/ written in FORTRAN

77. It replaces the KAPER program /1/ and its KAPROS-version

KAPER. An input check is performed by the module PRKAP4.

Compared with KAPER the new options of KAPER4 are:

The module is a member of the KAPROS program system. Its

output can be used in succeeding job steps.

The calculation of cylindrical unit cells is possible.

• Input cross sections are read from a GRUBA file /25/, while

KAPER required cross sections given in the obsolete GROU­

CO-file format.

• The treatment of self-shielding, (n,2n)-reactions, elastic

and inelastic scattering has been improved.

• Upward scattering and scattering beyond the energy limits

of the neighbor energy group are permitted.

• Cross sections of singularities can be calculated.

Output cell cross sections can be collapsed over several

energy groups.

• Many reaction rate edits are optional.

7.2 Authors of the Code

The coding of the present version of KAPER4 was completed by

R. Böhme and E. A. Fi scher. Many subroutines are taken from



KAPER, coded

were

P. E. McGrath. Predecessors of some subroutines

D. Wintzer, G. Bruhn and R. Kiesel.

7.3 Call

The first call parameter is interpreted as the data block index

IND of the input block I KAPER INPUT Defaul t value is

IND=1. It can be set to IND=indi by an appropriate call of the

module, e.g.

*GO SM=KAPER4,MPARM=indi.

7.4 Task of the Module

7.4.1 Calculation of Eigen Value, Flux and Adjoint

The module permi ts the calculation of eigen value, real and

adjoint flux of a fast reactor unit cell in plate geometry or

cylindrical geometry. The solution of the problem can be used

for the calculation of reaction rates and cell averaged cross

sections. The calculation of the adjoint may follow a calcu­

lation of the real flux. It yields two sets of distributions,

wi th the physical interpretation as importance of colliding

neutrons and importance of source neutrons. The first quantity

is oint to the flux multiplied by the total collision oper­

ator, the second one is adjoint to the flux multiplied by the

production operator. In standard diffusion and transport codes

the importance of source neutrons is usually calculated, while

in KAPER and former versions of KAPER4 the importance of col­

liding neutrons was calculated.

7.4.2 Averaging of Cross Sections

One of the main applications of KAPER4 is the calculation of

averages of group fluxes and cross sections over the cell vol­

ume or part thereof. In addition, cross sections in certain

regions of the cell are required for the analysis of measure-
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For that reason a vari of averaging procedures is

provided in the evaluation part of the phase FLUX. Calculated

guantities are:

Volume and number densities:

v = 'i. . k(V.)
J..=J, l

N
v

'i.
J.. k

(V.N. )/V
, l l,V

where i,j,k identify regions of a unit cell,

Vi volume of region ii

V total volume of the regions i=j,k

(j = 1 and k NR for the whole cell);

N. number density of an isotope v in region i;
l,V

N average number density of an isotope v in V.
v

Volume averages of the group fluxes over the whole cell or

parts of the cell:

where g is an energy group number,

PHI . neutron flux density in group g and region i;
g, J..

PHI average neutron flux density in group g,g
regions i=j,k.

Fluxxvolume averages of macroscopic and microscopic cross sec­

tions over the whole cell or parts of the cell:

SIGMAg,v

sigmag,\!

r. . k (V. PHI . SIGMA. ) / (V PHI )
l=J, J.. g,J.. g,l, V g

SIGMA / Ng, V \!



on i, i

where

SI
, i , v

macrosc c cross section in group g,

'Ij ;

SIGMA ave macroscopic cross section ing,v
group g, isotope v .,

sigma averaged microscopic cross section ing,v
group g, isotope v .

Special fluxxvolume averages of cross sections over parts of

the cell (l=m,n), but normalization made with the volume aver­

aged flux (PHI) of the whole cell:
g

SIGMAg,v

This option can be used for the simulation of multi-cell prob­

lems.

Special flux weighted microscopic cross sections for the anal­

ysis of reaction rate measurements:

srate .
g,l.,V

(sigma . PHI .) / PHIg,l,v g,l g

where sigma. are
g,l.,V

region i, isotope v;

tions containing the

microscopic cross sections in group g,

and srate . are microscopic cross sec-g,l,V
information about flux fine structure.

srate multiplied by fluxes of global rector calculations yields

a fine structure corrected reaction rate distribution.

Adjoint or bilinear weighted guantities are not provided by the

program.

7.4.3 Cross Sections of Singularities

KAPER4 can be used for the calculation of effective cross sec­

tions of singularities, i.e. control rods, followers, etc. The

method is described in 6.2.
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Provi sion i s made to collapse effective group cross sections

of the cell and capture and fission cross sections in selected

regions from the group structure used in the KAPER4 calculation

into a new group structure wi th less groups prior to output.

The real fluxes calculated for each region of the unit cell are

used as the weighting function for this procedure. Collapsing

with other weighting functions is not programmed. For all cross

sections weighting with the product of flux and volume is car­

ried out.

7.4.5 Inhomogeneous Problems and Perturbation Calculations

In plate geometry inhomogeneous problems can be solved and

perturbation calculations can be carried out, see 6.1.

7.5 Method of Solution

Self-shielded region-wise cross sections are calculated by the

method of Wintzer /2/. Using these cross sections, an eigen

value problem in plate or cylindrical geometry is solved by the

collision probability method. In plate geometry this method is

also applied for the solution of boundary source problems and

perturbation calculations using exact perturbation theory.

The test module PRKAP4 is only used for the examination of

input data and the calculation of storage space required.

7.6 Restrictions

7.6.1 Limits of Application

The test module PRKAP4 confines

number of 150 different isotopes.

input testing to a maximum

If more isotopes are used in



a unit cell, a dummy test le (e.g. PRDUM) has to be called.

This has no effect on calculated results.

There are inherent limitations in the theoretical formulations

which may restriet the applicability of the code. These are:

Scattering is assumed to be isotropie in the laboratory

system. A transport-correction i s always applied for the

calculation of the diffusion coefficient. The use of

transport cross sections instead of total cross sections

for the calculation of collision probabilities is optional.

Cross sections have to be provided as unshielded infinite

dilution cross sections plus shielding factors (frequently

called f-factors) at fixed temperatures for all materials

constituting the cello Temperature interpolation of cross

sections is not possible (see 7.11.4, KS). f-factors > 1.

are not permitted by the interpolation routine. Therefore,

a warning is printed in these cases and the factors are set

=1. The user has to decide about the adequacy of this

approximation.

• Solutions of inhomogeneous problems and perturbation cal­

culations in cylindrical geometry are not possible.

7.6.2 Boundary Conditions (see Fig. 7.1 ):

7.6.2.1 Plate geometry (Input parameter KGEO 1)

The pro9ram assumes periodic boundary conditions in the direc­

tion perpendicular to the plates. Reflective boundary condi­

tions have to be simulated by adding a mirror image of the cell,

thus doubling the number of regions. Infinite extension of the

plates is assumed in two orthogonal directions (see Fig. 7.2).



.6.2.2 indrical ( I :::>m"""'''''r KGEO 2:: 2)

An infinite 1 or square lattice of cells is assumed.

cell extends to infinity in the direction of the main axis.

cell may be approximated by an equivalent circular cylinder

(KGEO = 2, Wigner-Seitz-Cell) with white boundary conditions

(see 5.2) at the outer surface. Alternatively a square (KGEO =
3) or hexagonal (KGEO = 4) outer cell boundary is assumed. The

collision probabilities for neutrons entering (or produced in)

the outer region are then calculated using an approximation of

Sauer /16/.

7.6.3 Numerical Uncertainties

The neutron optical thickness of any region (i.e. total macro­

scopic cross section mul tiplied by the thickness) should not

be smaller than 10- 4 . This restriction implies that a region

may not be truly voided. Simulated void-regions should contain

typically approximately 1020 atoms/cm3 of some inert material

(e.g. Fe, 0, etc). A general rule for these cases cannot be

given. A violation of limits can be easily detected by vari­

ation of the void-simulation and observation of calculated

parameters. The uncertainty of the final eigenvalue wi 11 be

about 10 times the uncertainty EPSPHI requested in the input,

K3 of phase FLUX. The k-value calculated from areaction rate

balance after the final iteration may also differ from the

eigenvalue by 10xEPSPHI. The lower limit is always 2::10- 5 .

The accuracy decreases wi th increasing number of regions and

energy groups due to the cumulation of numerical uncertainties.

7.6.4 Correction for Leakage

A correction for leakage can be achieved by scaling collision

probabili ties in each energy group by (1 + (DxB 2 )/SIGT) -1 ,

where SIGT is the total group cross section in the unit cell,
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D is the diffusion coefficient calculated for the lattice and

B 2 are i bucklings. lf the corrections IDxB 2 lGT I exceed

0.2 in any energy group a warning is printed in the , but

the problem is solved in the usual manner. Negative bucklings

for leakage correction are permi tted. However, if convergence

to an eigen value is not achieved by the usual reduction of

collision probabilities a warning is issued and an attempt is

made to solve the problem wi th a leakage correction (1

(DxB 2 )jSlGT) of the collision probabilities. In such cases and

in cases where elementary diffusion theory is inapplicable

because of high absorption the method of correction for leakage

may be inappropriate.

The eigen value keff is a function of the input bucklings via

the leakage correction. The code contains an option to modify

the bucklings, in an iterative procedure, such that a desired

value of k eff is obtained.

7.7 Typical Running Times on a Siemens M7890

For problem examination and termination because of input errors

CPU-time is < 1 sec. Solution of a typical 3 region cell problem

for 26 or 69 energy groups requires a total CPU-time of < 10

sec. For the solution of a 16 region cylindrical cell problem

for 69 energy groups the CPU time increases to ~300 seconds.

7 . 8 ~p~E::ci al Applications

7.8.1 Cross Sections of a Singularity

It is possible to calculate effective cross sections of a sin­

gularity simulated by a cylindrical axial channel surrounded

by a large sea of core material (see 6.2).



7.8.2

The neutron streaming effect in a i on ( appr.

1
0 ) be ated th the folcan c

autions:

The parallel diffusion coefficient in a plate cell is

overestimated if the densi is too low. More accurate

di on coefficients can be obtained by use of the pro-

gram PARDON

If the low-densi region is the outermost region in a pin

cell, KGEO = 3 or 4 (square or hexagonal boundaries) prod­

uces better resul ts than KGEO = 2 (Wigner-Sei tz-cell). It

is recommended to use the program ARIADNE /5/ in cases of

true void regions.

7.8.3 Homogenized Cells

To run easily a case for a homogenized cell wi th KAPER4, the

parameter KGEO may be given as a negative number: KGEO =
-IKGEOI. In this case the geometry of the cell is maintained,

but the composition of each region is replaced by that of the

homogenized cello For a cell containing a large number of

regions it is recommended for the sake of shorter running time

to use the number densities of the homogenized cell (output of

the heterogeneous calculation) and run a case for a simplified

few region cello

The alternative method characterized by the reduction of all

cell volumina to small values leads in the limit to the homo­

genized cell, too. Its limitations due to numerical errors are

discussed in 5.1 and demonstrated in Table 8.1.
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7.9 Support Programs Used

The KAPROS system /24/ routines needed are:

KS1NIT KSDLT KSPUT KSPUTP KSGET KSGETP KSCC KSDD.

The library function MMDE1 of 1MSL and system functions for

log, cos, exp, sqrt are used. Microscopic cross sections are

read from a GRUBA-file /25/ by support of the subroutines GRU­

SEEK /25/.

7.10 Hardware Reguirements

The module length is 405 k bytes. The cross section preparation

phase requires maximum storage (in bytes):

1S = 4 x (106 + 8xN1S + 38xNR + 10xNRxNR + 32xN1SxNOG

+ 2xN1SxNOGxNOG + N1SxNR + NOGxNR)

where

N1S number of isotopes in the unit cell,

NOG number of energy groups in the microscopic cross section

tables,

NR number of regions in the unit cello

For the transition from the cross section preparation phase to

the cell calculation phase and the perturbation worth phase one

data set with RECFM = VBS of the length LU = 4 x «5 + NR)xNOGxNOR

+ (2 + NOG)xNF1 + 5xNR + 4) bytes is required.

NOR = number of isotopes for reaction rate calculations

NF1 - number of fissionable isotopes in the cell

For each perturbation sample to be inserted in the unit cell a

data set of similar length is required. 1f optional output is

requested (cell averaged number densities, bucklings after

criticality search), formatted output is written with LRECL =

80 on a unit selected by the user.
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7.11.1 Dimensions and Normalization

All dimensions are omi tted in the output of KAPER4. The user

has to take care of the proper selection of dimensions via

input. The relations between the dimensions of the KAPER4 input

quantities microscopic cross section /sigma/, number density

/N/, length /L/ and bucklings /B 2
/ must be

-1 -1/L/ /sigma/ x /N/

and /B2/ = /sigma/2 x /N/2

Two examples of widely used systems are given in Tab. 7.1. The

classical version is standard with GRUBA-files. Time dependence

is not considered. Energy dependence is treated by the multi­

group method. Temperatures have to be given in units requested

in the inpvt description (Kelvin for the cell temperature, MeV

for the calculation of fission spectra).

Region volumes Vi (i = 1,NR) are calculated according to the

geometry option chosen. Input quanti ties are the thicknesses

Ti shown in fig. 7.1. With Ri = L j =1,i T j , Ra = a the volumes

are:

plate geometry:

KGEO = 1 Vi = Ti x/L/
2

i 1, NR

cylindrical geometry, circular outer boundary:

KGEO = 2 V. = TIx(R. 2 - R. 12 )x/L/ i = 1,NR
~ ~ ~-

cylindrical

KGEO = 3

geometry, square outer boundary:
2 2V. = TI x ( R . - R. 1 ) x/L/ i = 1, (NR - 1)

~ ~ 1-

2 2
VNR = (4 xRNR - TIxRNR_1 )x/L/



VNR =

.. cylindrical

KGEO = 4
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QeOn1e·trv, hexagonal outer boundary:
2 2

TIx( -1 )x i = 1,(NR - 1)

2 2
(3.4642 xRNR - TIxRNR_1 )x/L/

The calculated flux densities are normalized to produce 1 neu­

tron (per time unit) in the unit cell:

1 = I. V. I PHI .x(NUxSFISS) "1 1 g g,1 g,1

The calculated adjoint (importance of colliding neutrons,

ADPHI) is normalized to yield a produced worth equal to keff :

k ff = I I. CHI .x ADPHI . (I , (NUxSFISS) I .xPHI , .xV.)e g 1 g,l g,l g g ,1 g,1 1

where I.
1

I
g

CHI

NU

SFISS

summation over all regions i = 1,NR

summation over all energy groups g = 1,NOG

fission neutron spectrum

number of neutrons produced per fission

fission cross section

7.11.2 External Units

It is possible to store the region cross sections calculated

in phase SSXS as a permanent data set for repeated later use

in the cell calculation phase FLUX.

Note: After a calculation of the adj oint the cross sections

stored in a data set in phase SSXS are altered in order to

permi t aperturbation calculation. They cannot be used for a

second phase FLUX calculation.

The formatted output - in the example collected on unit no. 10

can conveniently be stored as a data set for later manipu­

lations. For most applications within the KAPROS-system data

transfer can be made via KAPROS data blocks.
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7.11 .3

The block may be given as a KAPROS block.

Remark: Character expressions are identified the number of

characters in each string (4 or 8). If an expression is a con­

stant, it is given between a leading and a trailing apostrophe

('), as required in a KAPROS external block. Further, stands

for blank, I for the absolute value and / / for the dimen­

sion of a quantity.

The program i s subdivided in 3 subtasks (i. e. phases). The

phases can be called by their identifying key word. A logical

order should be obeyed, i.e. data requested by a certain phase

have to be calculated prior to its execution or given as input

data via an external data set.

For historical reasons the grouping of input parameters on

cards K is maintained in the present description. OnIy in a

few cases is the sequence of data different from former ver­

sions of KAPER. Old input card decks can be used with little

or no changes.

7.11.4 Phase SSXS, Cross Section Phase

In this phase the resonance seIf-shielded cross sections for

each region of the heterogeneous cell are caIcuIated and stored

in external data sets for use in subsequent phases.

K1

K2

K3

'ssxs'
GRSN

NOG

NB

CHARACTER*4, key word

CHARACTER*8

Group cross section set name, e.g. 'KFKINR

Number of energy groups

Note: Numbering of groups should be ascending

with decreasing energy.

Number of terms (recommended NB = 6) in the



KGEO

IHI

NOR

NCHI

on of the reaction coefficients

by aseries of rational functions.

< 0 The problem will be solved with region

number densities replaced by those of the

homogenized cello

IKGEOI = 1 Plate geometry

= 2 Cylindrical geometry with outermost

cylindrical boundary and white

boundary conditions

= 3 Cylindrical geometry with outermost

square boundary

4 Cylindrical geometry with outermost

hexagonal boundary

IF IHI > 0, number densities of the homogenized

unit cell will be written on unit IHI in the

format suitable for GRUCAL /22/ input.

(LRECL ~ 80, RECFM = FB, DD-card required)

Number of isotopes for which reaction rates are

to be calculated (NOR ~ NIS of card K5). The

cross section types SFISS (fission) and SCAPT

(capture) are calculated, along with the cell

cross sections, and are stored on unit NAP for

the isotopes specified by IS(i) (see K9).

INCHII ~ 10

If NCHI = 0, the internal fission neutron

spectra (see K10) are used in all calculations.

If NCHI > 0, it specifies the number of

fissionable isotopes for which a fission

spectrum is read in as input (cards K10 and

K11 ) .

If NCHI < 0, new fission neutron spectra,

having a Maxwellian shape, are to be

calculated for one of the following reasons:



K4

ITRANS

GAM

EPS

1 - the energy group structure of the cross

section set used is different from that of

the Karlsruhe sets,

2 - the temperature of the Maxwellian

distribution is to be changed from that

given internally in the program (see K10).

ITRANS = 0 normallYi

if ITRANS < 0, total cross sections will be

replaced by transport cross sections and the

diagonal term of the scattering matrix will be

corrected accordingly prior to writing cross

sections on unit NAP.

Parameter for the approximation of cross

sections. Recommended is GAM = 1000. (see

4.1 ) .

Parameter as above, recommended is EPS = O.

KS NIS Total number of isotopes

(ISOT(i), TEMPT (i), i=1,NIS)

Isotope names (CHARACTER*8) as specified by

the convention of the cross section set, and

temperatures of the isotopes in Kelvin. The

temperatures must be identical to one of the

standard temperatures at which self-shielding

factors are stored in the cross section file.

Temperatureinterpolation is presently not

possible.

K6 NISS Number of isotopes, for which self-shielding

should be neglected.

If NISS> 0:

(ISON(i),i=1,NISS) Isotope names (CHARACTER*8)



K7 NR Number of
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ons into ch the cell is

divided (NR ~ 2).

(T(i),i=1,NR) Thickness of the i th region.

(MIX(i),i=1,NR) Mixture number of the i th region

as determined by the order j in card K8.

K8 NMIX Number of different mixtures

«CON(j,i),i=1,NIS),j=1,NMIX) Isotope concentration

K9 MPERT

NAP

= 0, if the cross sections are being prepared

for the calculation of fluxes of the normal

core cell in phase FLUX.

= 1, if the cross sections are being prepared

for reactivity worth calculations in phase PERT

or for the perturbed cell option in phase FLUX.

External unit number on which cross sections

are to be written for use in a succeeding

phase. If NAP < 0, arewind is executed before

writing, otherwise the unit is held at the end

of the last record written in a preceding phase

SSX5 calculation. In this manner the cross

sections for reactivity worth sampIes can be

stacked one after the other on the same unit.

- Include DD-card for unit NAP (RECFM=VBS) -

If (NOR 0), go to 51

(I5(i),i=1,NOR) Number of the isotope in the ISOT(i)

array for which reaction rate cross sections

are desired.

51 If NCHI

If NCHI

If NCHI

0, end of card input for phase 5SXS.

> 0, go to K10

< 0, go to K12



(Cards K10 and K11 are repeated NCHI times)

K10 NAME CHARACTER*8, Name of fissionable isotope for

which a fission neutron spectrum is to be read

as input. The characteristic temperatures of

the 10 standard fission spectra in KAPER4 are

given in Tab. 7.2. The program also

associates isotope names given in the last

column of Tab. 7.2 with standard fission

spectra. However, these names cannot be used

for the identification of a spectrum to be

altered or replaced.

K11 (CHI(k),k=1,NOG) Fission neutron spectrum, byenergy

group, for isotope NAME.

S2 End of card input for phase SSXS.

K12 NI

NE

Number of isotopes for which a new nuclear

temperature is to be read as input. A

Maxwellian shape of the fission neutron

spectrum is assumed.

> 0, read in new energy group boundaries for

the group structure of the cross section set

used.

S3 If NE > 0, input card K13, otherwise go to S4

K13 N

(E(k),k

Number of new energy limit values to be

read in (N ~ NOG of K3).

1,N) Upper energy limit of the kth

energy group in MeV.

Note: Contributions to CHI in the range< 1 keV

are collected in the last energy group with

E(k) > 1 keV. Contributions to CHI from the



range 20 MeV to E(1) are collected in group 1.

S4 If NI > 0, input card K14, otherwise end of card input for

phase SSXS.

(Card K14 is repeated NI times.)

K14 NAME

TEMP

Name of fissionable isotope for which a new

Maxwellian temperature is to be read in. The

name convention is the same as on card K10.

Maxwellian temperature (MeV) for isotope NAME.

S5 End of card input for phase SSXS.

7.11.5 Phase FLUX, Flux, Adjoint and Reaction Rate Phase

In this part of the program the flux and adjoint distributions

in the heterogeneous cell are calculated, as weIl as heteroge­

neous reaction rates if they were specified during the cross

section preparation in phase SSXS.

K1 'FLUX'

K2 NHOM

NXST

CHARACTER*4, key word

o Recommended.

> 0, if the user wishes to use the collision

probabilities from phase SSXS (transfered on

unit NAP, NXST, resp.). If the thickness of the

plate cell is near the lower limit of the

validity of the method, this option may improve

slightly the accuracy of the results.

Number of an external unit which contains cross

sections for the normal cell (a unit NAP of

phase SSXS). When fluxes from this calculation



are to be used in reac worth se,

NXST must a positive number. In this case

the cross sections are saved and the fluxes are

written on NXST for transfer to phase PERT. If

NXST is negative, the adjoint distribution in

the cell is not calculated.

Note: After a calculation of the adjoint the cross sections

stored on unit NXST in phase SSXS are altered in order to permit

aperturbation calculation. They cannot be used for a second

phase FLUX calculation.

NPERT Valid for slab geometry only.

Number of an external unit which contains cross

sections for the perturbed cell (a unit NAP of

phase SSXS). This is an option which can be

used to calculate flux and reaction rate

distributions in a cell inserted between the

normal repeating cells of the assembly but

which is different, in some manner, from the

normal cello

If the perturbed cell option is not used,

NPERT must be zero.

IB = 0

=

> 1

No bucklings are to be used, therefore

leakage is set equal to zero.

Universal buckling to be used

(input K4A or K4B)

Group dependent bucklings to be used

(input KSA or KSB)

KBSQ > 0: Iteration on bucklings to a desired

keff as specified on card K6. After the

iteration new bucklings are stored in the

KAPROS block 'KAPER BUCKLINGS '

= 0 Otherwise.
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=1 Valid for plate only!

If the perturbed cell, as defined on unit

NPERT, is to be extended anormal cell from

unit NXST on each side before calculation of

the flux distribution in the perturbed cello

This option can be used to investigate the in­

fluence of the perturbed cell boundary selec­

tion without redefining the cell in phase SSXS.

= 0 For all other cases.

= 2 Anisotropic leakage is considered and

directional diffusion coefficients will be

calculated. If this option is selected,

bucklings should be input (K4B or K5B). The

diffusion coefficient is calculated parallel

and perpendicular to the main axis as indicated

in Fig. 7.2.

= 1 As above, but STR PE is calculated from

the quantities STR and STR PA. This option

should not be used in the case of cylindrical

cells.

= 0 Otherwise

~ 0 Option to homogenize cross sections

over part or all of the regions in the basic

unit cell for use in a succeeding calculation.

To produce average cross sections for a (cylin­

drical) singularity, it is reguired to put

IIHCSI=NR-1 and KGEO ~ 2, and to fill region NR

with core material (thickness of the order of

two mean free paths). IIHCSI ~ NR-1 otherwise.

IHCS < 0 permits the output of fractions of

KAPER4- cross sections into the blocks

'INPUT SIGMUT$$$$' for the approximate solution

of multi-cell problems.

= 0 Otherwise



K3 IMIN

IMAX

EPSPHI

EPSKEFF
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Minimum number of outer iterations for

eonvergenee on the eigenvalue (IMIN ~ 3).

Maximum number of outer iterations, e.g. 20.

Convergenee eriterion for the fluxes,

EPSPHI ~ 1x10- 6 .

Convergence eriterion for the eigenvalue keff'

EPSKEFF ~ 1x10- 6 .

Note: Due to numerieal errors the uneertainty of the

eigenvalue is about 10xEPSPHI.

S1

S21

K4A

If

If

IF

BSQ

IB = 0, go to S3

IB > 1, go to S22

IAN > 0, go to K4B

Universal buekling, isotropie and independent

of group number.

Go to S3

K4B BSQPARA,BSQPERP Universal bueklings in two direetions,

independent of group number, see Fig. 7.2.

Go to S3

S22 If IAN > 0, go to K5B

K5A (BSQ(k),k=1,NOG) Isotropie and group dependent

bueklings, NOG = number of energy groups.

Go to S3

K5B (BSQPARA(k),k=1,NOG), (BSQPERP(k),k=1,NOG) Group

dependent bueklings in two spatial

direetions, see Fig. 7.2.
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53 If KB5Q = 0, go to 54, otherwise input card K6.

K6 MAXB Maximum number of iterations on the bucklings

to obtain the specified keff.

AKE Desired keff

EBK Maximum deviation of keff from the

desired value AKE.

FAK > o. Factor used to multiply the initial

bucklings for a second guess (recommended 1.2)

= o. For a second guess all bucklings are
-3reduced by 1x10

< O. For a second guess all bucklings are

reduced by IFAKI. If IAN = 1, the reduction is

iFAKI multiplied by

(IB5QPERPI )/( IB5QPERPI + IB5QPARAI) and

(IB5QPARAI )/( IB5QPERPI + IB5QPARAI) for the

appropriate direction dependent bucklings.

These splitting factors are set to 1/3 resp.

2/3, if IB5QPARAI + IB5QPERPI = o.

NBQ > 0 Number of a unit onto which new

bucklings are written after the last iteration

(LRECL ~ 80, RECFM = F, DD-card required, if

NBQ F 6)

~ 0 Otherwise

54 If IHC5 = 0 (on K2) End of card input for phase FLUX,

otherwise follow input data for the

output of homogenized cell cross

sections.

If IHC5 > 0

If IHC5 < 0

go to K7B

go to K7A



Factors mult ication of cross

sections prior to into the KAPROS-block

'INPUT_SIGMUT$$$$' *), used for the simulation

of multi-cell ems:

FAKMAC

FAKMIC

FAKCHI

FAKD

IPRINT

K7B IM

multiplicand of macroscopic cross sections,

multiplicand of microscopic cross sections,

multiplicand of CHI,

multiplicand of all diffusion coefficients,

no print-out of cross sections, if IPRINT = O.

IIMI number of a mixture in a SIGMN-block

named 'SIGMN KAPER ' created by the module

GRUCAL /22/. It can be modified by means of

the KAPROS-block 'INPUT_SIGMUT$$$$' *), which

will be created in this phase.

If IM < 0, group collapsing will be carried out

(input card K9).

IRR If IRR F 0, microscopic reaction rate cross

sections 'SFISS 'and 'SCAPT 'for the

isotopes (IS(i),i = 1, IIRRI) are included in

the KAPROS-block 'INPUT_SIGMUT$$$$'. IS(i) is

input in phase SSXS, K9. Note that for a

modification procedure identical types

(isotope names ending .. MIC) have to be

included in the block 'SIGMN KAPER---

If IRR< 0, regionwise constant reaction rate

cross sections will be calculated in addition

and stored in the data block

'xs RATES ' (include K10). These cross

*) $$$$ stands for , HET_, or HOM_ , according to MSIG
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sections provide heterogeneity corrected

reaction rates in each cell region if

multiplied by cell averaged fluxes.

IRR = 0 otherwise.

Number of additional transport cross section

types to be included in 'INPUT_SIGMUT$$$$'. For

permitted choices see TYPE of K8.

Indicator for the intended application of the

block 'INPUT_SIGMUT$$$$' and selection of

$$$$:

= 0 ($$$$ = ) KAPER4 cross sections

replace the cross sections of mixture IIMI in

the SIGMN-block 'SIGMN KAPER.-----
= 1 ($$$$ = HET_) KAPER4 cross sections will

be added to the cross sections of mixture

I IMI .

=-1 ($$$$ = HET_) KAPER4 cross sections will

be multiplied with the cross sections of

mixture I IM j •

= 2 ($$$$ = HOM_) KAPER4 cross sections will

be subtracted from the cross sections of

mixture I IM I .

=-2 ($$$$ = HOM_ the cross sections of

mixture IIMI will be divided by KAPER4 cross

sections.

Note: See 6.3.2 for hints on the proper choice of MSIG.

MCHI = 0 KAPER4-CHI replace the CHI-data of mixture

I IMj .

= KAPER4-CHI will be added to CHI of mixture

I IM I·
=-1 KAPER4-CHI will be multiplied by CHI of
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IE

mixture IIMI.

= 2 KAPER4-CHI will be subtracted from CHI of

mixture I IMI .

=-2 CHI of mixture IIMI will be divided by

KAPER4-CHI.

= 3 CHI will not be included in

'INPUT_5IGMUT$$$$' .

1151 Number of the first region to be included

in the homogenization procedure of cross

sections, usually 1151 = 1.

If 15 < 0, K7A to K10 will be repeated after

K10. The data of this second averaging process

will be included in a further block

'INPUT_5IGMUT$$$$', IND = OLDIND + 1, with

$$$$ set according to the next choice of M5IG.

By this option several cross section

modifications can be obtained from a single

KAPER4 calculation.

IIEI Number of the last region to be included

in the homogenization procedure, usually IE

NR of 55X5(K7). If IE < 0, the averaging

procedure will be carried out for cross

sections in regions 1151 to IIEI, but

normalization will be made to the average cell

flux in regions 1 to NR. By choice of this

option the flux fine structure of the cell will

be represented in the output cross sections.

55 If 12 = 0, go to 56

(no additional transport cross section types)

K8 (TYPE(i),i = 1, 12) CHARACTER*4

Permitted 'TYPE's are:



'PE$$'

'PA$$'

'FV$$'

'BS$$'

$$'

'VO$$'

-~-

for perpendicular diffusion

for parallel diffusion (see Fig. 7.2)

flux and volume weighting of regionwise

transport cross sections (beware of

possible condensation errors, if IM<O)

usual STR-type of KAPER4 obtained by

buckling weighting perpendicular and

parallel diffusion coefficients.

as above

special option for the creation of a

data block 'KAPER STR VOID'. This block

contains all data needed for the cal­

culation of directional diffusion

coefficients of a true two-dimensional

void in a two region cell by the

programs ARIADNE /5/ or PARDON /9/.

Beware of the meaning of IE on K7B in

this case: the cell will be divided in

two parts, region 1 extending from 1 to

IE, region 2 extending from IE+1 to NR.

The different types of

labelied 'STR_TYPE', with

sen by the user. See 3.3

or transport calculations.

transport cross sections will be

$$ in the word TYPE arbitrarily cho­

on the choice of TYPEs for diffusion

Remark: A 1/3 - 2/3 weighting of directional diffusion

coefficients is equivalent to 1/(3xSTR) of the

isotropie caIcuIation (IAN = 0).

S6 If IM > 0, go to S7 (no collapsing of group cross

sections)

K9 NG Number of new groups (~ number of old

groups)

(NEWG(i),i=1,NG) Uppermost in energy - old group which
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falls into new group i NEWG(1) = 1 in general.

S7 If IRR ~ 0, go to S8 (no microscopic cross sections in

selected cell ons)

K10 NUT Number of a unit onto which cross sections are

to be written (formatted, LRECL ~ 80,

include DD-card, if NUT f 0 or 6).

NUK Number of regions, for which regionwise

microscopic reaction cross sections shall be

calculated.

(NRR(i),i=1,NUK) Region numbers selected

(1 ~ NRR ~ NR from K7 of phase SSXS)

S8 If IS < 0 return to S4, otherwise end of input of phase

FLUX.

7.11.6 Phase PERT, Reactivity Worth Phase

Attention: This phase is at present only applicable to plate

geometry, IKGEOI = 1 on card K3 of SSXS.

K1

K2

'PERT'

NFLUX

NPERT

CHARACTER*4, key word

Number of an external unit containing cross

sections and fluxes for the normal cello

Normally NFLUX=NXST on card K2 of phase FLUX

after a calculation of the adjoint.

Number of an external unit containing cross

sections and fluxes for the perturbed cello

Normally NPERT=NPERT on card K2 of phase FLUX.

When the perturbed cell option is not used,



NXECT

NTAPE

NTAPE1

NSAM

NFP

NCELL

NPERT=O. In this case the program substitutes

anormal cell for the perturbed cell and,

therefore, all remarks pertaining to the

perturbed cell in the following input data

apply to the substituted normal cello

Number of an external unit containing cross

sections for the various sampies to be

calculated (a unit NAP of one of the phase

SSXS calculations).

Additional external unit (RECFM=VBS) for

storing collision probabilities. The space

needed on this unit is

SPACE 4xNOGxIXxIX bytes, where

NOG = number of energy groups

IX 2 xNCELLx(NY + NW)

NCELL = input data

NY number of regions into which the

normal cell is divided

NW number of regions into which the

perturbed cell is divided.

Additional external unit for storing collision

probabilities. The space needed on this unit

is the same as calculated for NTAPE, RECFM=VBS.

Number of sampies to be calculated. This is

the number of sets of group constants on unit

NXECT.

Maximum number of fissionable isotopes in any

one set of group constants on unit NXECT.

Number of normal cells ( ~ 1) to be placed

on either side of the perturbed cell for the



K3 IH

IH1

MORE
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calculation of the reactivi effects. For

this range s in collision lities

will be calculated. NCELL should be large

enough so that the probabili of a neutron

from the perturbed cell to suffer a collision

before reaching the outer boundary of the last

normal cell is at least 0.98.

If the parameter is given as NCELL < 0, the

program will select an appropriate value for

it. This value is chosen to yield a neutron

optical thickness of about 6.5 of the normal

cells on either side. It depends, of course,

on the energy group.

= 1, Flux and adjoint distributions are to be

superimposed on a group-dependent eosine

curve, normal to the plate cello

This curve is defined by the bucklings BSQPERP

given on card K4B or KSB of phase FLUX if

IAN > 0 as

f(x) cos(sqrt(BSQPERP)xx), if BSQPERP ~ Oi

f(x) 1, if BSQBERP < O.

The centre point, x = 0, is located at the

centre of the cell containing the sample.

= 0, Option not used

= 1, Perturbed flux calculated and used in

perturbation calculation.

= 0, Unperturbed flux (as calculated in phase

FLUX) used in perturbation calculation.

= 1, Cross sections and/or region dimensions

are to be changed for the perturbed cell as

they are transfered from phase FLUX.

= 0, Option not used

=-1, A modified density can be specified in one



or more

K5.

-86-

ons of the perturbed cell with card

NUNPER If MORE = 1, number of an external unit th

new cross sections r region U.l.Ul<:::H>::>ions

K4 ENORM

for the perturbed cell as prepared from phase

SSXS. For MORE ~ 1, the parameter NUNPER is

meaningless.

This variable is used to normalize the

reactivity values to the results of a

multi-dimensional calculation. Normally ENORM

is equal to
+ +

Sf(O)xS (O)/J(Sf(r)xS (r»dr,

+
where Sf(r) and S (r) are the

fission and adjoint sources, respectively, and

the integration is over the reactor core and

reflector. The sampie is assumed to be located

at r = o.

S1 If MORE #-1 go to card K6, otherwise input card K5.

(VOID(i),i=1,NW) VOID(i) < 1.0 for the i th region

in which a reduced density is simulated in

the unperturbed state, otherwise set VOID(i)

= 1., where i = 1, NW are the region indices

of the perturbed cello It is possible to use

VOID(i) to adjust the density of the i th

region by simply putting VOID(i) equal to an

appropriate value, e.g., to reduce the

d ·t . th .th. f tenS1 y 1n e 1 reg10n a ac or

of 2, VOID(i) = 0.5.

Card K6 is repeated NSAM times with a descriptive title for

each sampie in the order in which they are calculated.



K6 NT Number of CHARACTER*4 in

descri on title (NT ~ 15)

(TITLE(i),i=1,NT) CHARACTER*4 Description title

End of card input for phase PERT.

7.12 Data Blocks Created by the Module:

7.12.1. Data block 'KAPER MIX----

The data block contains number densi ties of the homogenized

unit cello It can be included in the block MISCH of the module

GRUCAL /22/.

NIS Number of isotopes in the homogeneous mixture

6*' 6 words CHARACTER*4, 4 blanks each

(NAME(i),TEMP(i),CON(i),i=1,NIS)

Name of the isotope in KAPER4-input (CHARACTER*8),

temperature in Kelvin and number density of each

isotope.

7.12.2. Data block 'KAPER GEO----

The data block contains information about the cell geometry.

It must be present for a succeeding calculation of anisotropie

diffusion coefficients using the module ARIADNE. It contains:

KGEO

NR

( R( I ) , I =1 ,NR)

( V ( I ) , I =1 ,NR)

Geometry index of KAPER4

Number of regions of the unit cell

Thicknesses of regions

Volumes of regions



7.12.3. Data block 'KAPER BUCKLINGS I

This block will only be created after an iteration on bucklings

to a specified ff" It contains the bucklings used for the

last step of the iteration.

(BSQPARA(g),BSQPERP(g),g=1,NOG)

Two direction dependent bucklings per energy group

g=1,NOGi see Fig. 7.2 for the definition of

directions.

7.12.4. Data block 'xs RATES-----

The datablock contains microscopic cross sections for the cal­

culation of fine structure corrected reaction rates using the

module RATES.

NUK

IRR

NG

TYPE(1)

TYPE(2)

(ISOTOP(i),i=1,IRR)

(NRR(r),r=1,NUK)

Number of regions of a unit cell for

which cross sections are provided

Number of materials for which cross

sections are provided

Number of energy groups in the output

(NG S; NOG)

Word 'SCAPT , CHARACTER*8

Word 'SFISS I CHARACTER*8

Names of the IRR isotopes i, CHARACTER*8

Numbers of the NUK regions r in the unit

cell

( ( ( sc apt ( g, i ,r) , g=1 ,NG) , ( sfi s s ( g, i, r) , g=1 ,NG) I i =1 , IRR) , r=1 ,NUK)

Microscopic capture cross section scapt

in each energy group g, microscopic

fission cross section sfiss in each group

g, for each isotope i and each region r.
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7.12.5. Data block 'INPUT SIGMUT$$$$'

On request, data blocks 'INPUT SIGMUT$$$$', IND ~ 1, with $$$$

set according to 7.11.5, K7B of the phase FLUX, will be creat­

ed. Each call for an averaging procedure increases the block

index by the increment 1, if block names are identical. The

blocks contain all input required and the cross sections to be

used for the modification of a SIGMN block /22/

'SIGMN KAPER ' by the module SIGMUT. The length of a block

is 4 x (7+(2 xNG+8)x(6+NG+2 x IRR+IZ» bytes.

NG = number of energy groups in the output cross section file

IRR = number of materials, for which microscopic cross

sections for reaction rate calculations are requested

IZ = number of additional cross section types requested, e.g.

direction-dependent transport cross sections.

7.12.6. Datablock 'KAPER STR VOID

This block provides data required for an execution of the mod­

ule ARIADNE /5/. It includes addresses of data to be found in

'INPUT SIGMUT (MSIG=O, TYPE='VO') and transport cross

sections required for the calculation of the diffusion coeffi­

cients of a cylindrical cell having a true void region.

7.13 Data Blocks Read by the Module

The data block containing all input data is named

'KAPER INPUT It can be provided as an external block

with the leading information

*KSIOX DBN=KAPER INPUT ,IND=indi,PMN=PRKAP4,TYP=CARD

and the terminating information

*$*$

Its content is given in chapter 7.11.
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The test module PRKAP4 confines testing to a maximum

number of 150 different i s. If more isotopes are used in

a unit cell, a dummy test module (e.g. PRDUM) has to be called.

8. Sample Problems

The input data for three examples are given in the Appendix.

The examples are most representative for common applications

of the code.

The first example is a typical slab cell problem as

encountered in the analysis of fast reactor critical

experiments. Its results are included in Tab. 8.1 and 8.2.

Many resul ts of simi lar calculations have been publi shed

in the past. A comparison of slab cell calculations using

KAPER4 and MURAL of UKAEA was made in /26/.

In the second example the new version 1.5 of KAPER4 is used

for the calculation of the pin cell of a tight pitch, Pu­

fuelled PWR. Calculated resul ts for a similar cell are

summarized in Tab. 8.3.

The last example shows the use of the special version for

the preparation of effective cross sections of control rods

to be used for operation of a fast breeder reactor.
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for a Gas-Cooled Fast

0.37 cm, R2 = 0.56702 cm

-4 -1variable, L2 = 2.0 x 10 cm

-1
0.2 0.3 0.4 0.6 1 .0L: 1 (cm ) o. 1

D
h

(cm) 7.8073 3.9089 2.6071 1.9558 1 . 3041 0.7826om

cylindrical
cell model

6D 0.1300 0.1331 0.1353 0.1371 0.1405 0.1463
z

~D
0.0541 0.0559 0.0572 0.0582 0.0608 0.0651

r

~(6D +26D ) 0.0794 0.0816 0.0832 0.0845 0.0874 0.0922z r

~D. 0.0792 0.0813 0.0828 0.0841 0.0866 0.0910
lSO

Dancoff facto
model

~D 0.1578 0.1562 0.1554 0.1551 0.1556 0.1581z

~D 0.0414 0.0425 0.0434 0.0443 0.0462 0.0496r

~(~D +2~D ) 0.0802 0.0804 0.0807 0.0812 0.0827 0.0858z r

6D. 0.0866 0.0863 0.0863 0.0865 0.0873 0.0896
lSO



Table 5.2: Dk/D
horn

for a Gas-Cooled Breeder Cell

L 1 = 0.59657
-1

crn Variable L 2

-1
Dh (ern) D /D D /D D. /Dh

L2 (crn ) orn z horn r horn lS0 orn
A B A B A B

0.4 0.6891 1 .0048 1 .0063 1 .0026 1 .0021 1 .0033 1 .0036

0.2 0.9037 2.0269 1.0340 1.0142 1 .0105 1.0184 1.0192

O. 1 1 .0703 1.0524 1.0646 1.0268 1.0197 1.0351 1.0364

0.05 1 • 1790 1.0723 1.0876 1.0362 1 .0264 1 .0479 1.0493

0.01 1.2832 1.1010 1.1133 1.0438 1.0337 1 .0623 1 .0636

0.0002 1.3116 1.1070 1 . 1186 1 .0463 1 .0351 1 .0660 1.0666

A Cylindrical Cell

B with Dancoff factor

<Cl
'I



Table Caleulational model of the eontrol rod in the

supereell

1 Model dimensions and the ealeulational mesh (mm)

,
Zone Outer Radius Thiekness - No of Mesh Points

1 53.7128 53.7128 4

2 76.7773 23.0645 2

3 203.1336 126.3563 4

2. Atomie number densities(10 22 atoms/em3 )

Nuelide Zone 1 Zone 2 Zone 3

B10 1. 2390
B11 4.9864
C 1.5659
0 1. 3769
Na 0.5582 1 . 5301 0.9407
Al 0.0298
Si 0.0192
Ti 0.0199
V 0.0014
Cr 0.1969 0.4399 0.3673
Mn 0.0179 0.0158
Fe 0.7602 1.1536 1 . 3301
Ni o. 1270 0.6145 0.2040
Cu 0.1547
Mo 0.0185 0.0232
U235 0.0023
U238 0.5698
Pu239 0.0930
Pu240 0.0196
Pu241 0.0033
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Table 7.1: Dimensions of KAPER4 Quantities

I \
I dimension in Ire- I

quantity symbol used I classical Sl-units Imarkl
1 \ 1 1 1
1++++++++++++++++++++1+++++++++++++++1++++++++++++++:+++++++++++++1++++\
1 1 1 \ \
1 microscopic \ \ 1b = 1fm

2
= 1 1

1 cross section 1 sigma,sig.. I 10-
24

cm
2

10-
30

m2
I I I

1 1 1 1 \
\ number density, 1 I \ N \

1 concentration I N \ 10 24cm -3 1030m-3 I 1

I 1 I I P 1
\ fission spectrum ICHIli 1

I 1 1 \ U \
1 length \ L, T ,R I 1cm 1m I I

I I I 1 T 1
2 -2 -2I bucklings \ B ,BSQ.... I 1cm 1m \ I

1 \ I I
1--------------------1---------------\--------------:------------- ----I
I 1 1 1
\ macroscopic 1 1 \

1 t . \ SIGMA' N \ 1cm - 1 1m- 1 0 1cross sec 10n =s1gmax

I I I 1
1 diffusion constant 1 D=1/(3xSIGTR) I 1cm 1m U I

1 1 I

volume \ V 1 1cm
3

1m
3

T 1

I I 1
adjoint 1 ADPHI 1 1 : 1 P 1

I I 1
flux density 1 PHI 1 1cm- 2 1m-2 U 1

1 I 1
reaction rate I 1 T I

per atom 1 sigmaxPHI I 10- 24 10-30
1

1 1 1
--------------------1---------------1--------------:------------- ----I

1 \ 1
optical thickness 1 SIGMAxL 1 : 1 I

1 1 I

leakage correction \ DxB
2

/SIGT I 1

\ I 1
time 1 not us ed 1 : 1 I

1 1 1
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Table 7.2: Standard Fission Spectra in KAPER4

Fission

Spectrum

Identifying

Isotope Name

Maxwellian

Temperature

Associated

Isotope Names

2

3

4

5

6

7

8

9

10

'TH232_
,

1 .32 MeV

'u 233 1 . 31 MeV

'u 234 1. 31 MeV

'u 235_
,

1 .30 MeV

'u 236_
,

1 .31 MeV

'u 238_
,

1 .35 MeV

'PU239_
,

1 .41 MeV

'PU240__ ' 1 .39 MeV

'PU241 __ ' 1 .34 MeV

'PU242 1 .39 MeV

'NP237__ '

'AM241 __ '

'CF252__ '

'CM242_'

'PU238__ ', 'AM243__ '

'CM244__ '

Note: Fröhner (1988) has suggested to use Watt's distribution instead

of Maxwell's. This is not foreseen in KAPER4. As a second choice

the following Maxwellian temperatures were recommended and can be

used in KAPER4: 1.375 MeV for 239 pu fission ad 1.318 MeV for

235 U fission (see Appendix, second case, as an example).



-101-

Table 8.1: Plate Cell Caleulations

Approach of the homogeneous limit for the plate eell of Appendix A

Isotropie diffusion

thiekness in em in mfp at ~1MeV keff k k D
00 co

plate 1 plate 2 plate 1 plate 2 for keff=1 for B2=0 (em)

6.2 5.7 .66 1. 65 0.97399 1 .99892 1.79010 1.892

.62 .57 .066 .165 0.99677 1.96965 1.78110 1.756

.062 .057 .0066 .0165 1.00013 1.96555 1.77935 1.738

.0062 .0057 .00066 .00165 1.00045 1.96519 1.77923 1.737

.00062 .00057 .000066 .000165 1.00000 1.96490 1.77911 1 .737

NHOM=1 .000066 .000165 1.00056 1.96520 1.77927 1.736

homogenized .120 . 111 1.00055 1.96513 1.77923 1.736

GRUCAL(X of 239pu)+BUCITO· 0.98024 1.79600 1.836

Anisotropie diffusion

thiekness in em in mfp at ~1MeV keff k k D
co co

plate 1 plate 2 plate 1 plate 2 for keff=1 for B2=0 (ern)

6.2 5.7 .66 1. 65 0.97470 1.99860 1.79010 1.889

.62 .57 .066 .165 0.99694 1.96957 1.78111 1.756

.062 .057 .0066 .0165 1 .00017 1.96553 1 .77935 1.738

.0062 .0057 .00066 .00165 1.00046 1.96519 1.77923 1.737

.00062 .00057 .000066 .000165 1.00000 1.96491 1.77912 1.737

homogenized .120 . 111 1.00055 1.96513 1.77923 1.736

Notes:

26 energy groups, KFKINR cross seetion set; D is the diffusion eoeffieient

ealeulated by eollaps ing Ltr to 1 energy group; mean free path (mfp) is

thieknessXLt in energy group 5.

Input B2
: perpendieular 12.090E-4 em- 2 , parallel 21.763E-4 em- 2
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Cross Sections

Plate cell of Appendix A,

26 energy group calculations, KFKINR cross section set.

GRUCAL KAPER4 KAPER4

cell configuration: homogenized homogenized heterogeneous

k (B 2 =0) 1.7960 1 .7792 1.7811
00

B2 (k =1) 32.48E-4 33.89E-4 33.63E-4eft
k"" (keft=1) 1.9927 1 .9654 1.9686

1-group cross sections caleulated by eollapsing 26 group data to one group

data by application of BUCITO and COLRAB /13/:

L 2.000E-3 2.083E-3 2.078E-3e
\I 1.197E-2 1.198E-2 1.200E-2

E 6.008E-3 6.096E-3 6.096E-3rem
Lf 4.031E-3 4.035E-3 4.041E-3

Ltr 0.18151 0.19198 0.18988

Note: X of 239 pu used in the GRUCAL ealeulation;

anisotropie diffusion and reeommended parameters used for the

KAPER4 ealeulation of the heterogeneous eell.
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Table 8.3: Comparison of KAPER4 Options

Pin cell of an advanced PWR as given in Appendix A,

69 energy groups, G69COLD cross section set.

Search for critical bucklings B2
, starting with B2 = 20.833E-4 -2cm

recommended Lt replaced EPS = 1. GAM = 10 4 EPS < O. remark

parameters by Ltr Lt replaced Lt replaced Lt replaced

keff 1.03399 1.03393 1.03352 1.03417 1.03676 B2 input

B2 23.380E-4 23.349E-4 23.244E-4 23.407E-4 24.042E-4 keff=l

k 1 . 10962 1.10957 1 . 10905 1.10984 1.11290 keff=l
00

l-group cross sections calculated by collapsing 69 group data to one group

data by application of BUCITU and COLRAB /13/:

L 1.5028E-2 1.5031E-2 1.5037E-2 1.5029E-2 1 .4998E-2
c

vL f
2.6949E-2 2.6948E-2 2.6938E-2 2.6955E-2 2.7019E-2

L 2.5135E-2 2.5129E-2 2.5132E-2 2.5129E-2 2.5114E-2rem
Lf

9.3522E-3 9.3519E-3 9.3483E-3 9.3544E-3 9.3766E-3

Ltr 0.29254 0.29254 0.29256 0.29252 0.29246

Note: Recommended parameters are EPS = O. J GAM = 1000., use of Lt (ITRANS=O).
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Fig.1: Regions In a Cylindrical CeU
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Figure 7.1: Geometry Options of KAPER4

KGEO=1 Plate Geometry

11 1 1 1 1 11
11 I 1 1 1 11
11 l 1 1 1 11

periodic II+- T(1) -+1 I+- TU) -+1 I+- T(NR) -+ 11 periodic
boundary 11 1 1 1 1 11 boundary

11 1 1 1 1 11
11 1 1 1 I 11
11 1 I 1 1 11
II+- cell thickness -+ 11

KGEO=2 Cylindrical Geometry -circular white boundary-
(WIGNER-SEITZ-cell)

G
U

T(1) .... T(NR)

KGEO=3 Cylindrical Geometry -square boundaries periodic-

0:·. .

T(1) .... T(NR)



-106-

7.1 continued

KGEO=4 lindrical Geornetry -hexagonal boundaries periodic-

"';': '";'(

T(NR)

\
\
\

\

/
: /
/

... : /: ~

O~-
. .\

\
\

\

T(1) .. ...
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Figure 7.2: Definition of Directions

a) Plate Geometry (KGEO=1 )

parallel (BSQPARA)
infinite extension

t
I
I

I I I I I
I I I I I
I I I I I
I 1 I I I
I 1 I 1 I

perpendicular r~ T(1) -+1 I+- TU) -+1 I+- T(NR) -+
(BSQPERP) +- I 1 1 I I
infinite repetition I 1 I I I

1 1 1 1 I
I 1 1 1 I
I 1 1 1 1
I
I+- cell thickness

b) Cylindrical Geometry (KGEO > 1)

perpendicular
(BSQPERP) +------ --+
infinite repetition

parallel (BSQPARA)
infinite extension t

t I
I I

+
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APPENDIX: Input Examples of KAPER4, Version .5

1) TWO REGION PLATE CELL

1ST STEP: CROSS SECTION PREPARATION FOR NORMAL PLATE CELL
2ND STEP: CROSS SECTION PREPARATION FOR PERTURBED CELL
3RD STEP: CROSS SECTION PREPARATION FOR PERTURBATION SAMPLE
4TH STEP: CROSS SECTION PREPARATION FOR HOMOG. PERTURBATION SAMPLE
5TH STEP: FLUX CALCULATION, EIGEN VALUE PROBLEM AND BOUNDARY SOURCE

PROBLEM
6TH STEP: PERTURBATION CALCULATION

, 900.

--- IF NCHI.NE.O

1 .5-2

1 .5-2

'0, 900.

1 .7-20.00.0

: 'SSXS'
'SSXs'

: GRSN
'KFKINR

NOG NB KGEO IHI NOR NCHI ITRANS
26 6 1 10 0 0 0

GAM EPS
1000. O.
NIS, (ISOT(I),TE~lPT(I),I=1 ,NIS)

6
, 300. 'u 238 '300. ' PU240
'900. 'FE ' 900.

NISS, IF(NISS.GT.O): (ISON(I),I=1,NISS)
1 'FE'

NR , (T (I ) , 1=1 , NR) , (MI X(I ) , 1=1 , NR)
2 0.62 0.57 1 2

NMIX,((CON(J,I),I=1 ,NIS),J=1 ,NMIX)

;'< $ K2

;'<$ K3

;'<$ K4

;'< $ K5

'PU239
'NA

;'< $ K6

;'<$ K7

;'<$ K8
2
;'< $ HI XTURE 1

1.0-8 0.0
;'<$ MIXTURE 2
4.3-3 1.2-2 4.-4 3.3-2 0.0

*$ K9 : MPERT, NAP, IF(NOR.GT.0):(IS(I),I=1,NOR)
o -15

*$ K10 TO K14 : CHI,TEMP,ETC. SEE KAPROS NOTE 64

//JOBCARD
/r'
// EXEC KSCLG7
//* DA-UNIT CONTAINING MICROSCOPIC CROSS SECTIONS
//K.FT01F001 DD DISP=SHR,DSN= KFKINR
//* UNIT FOR ADDITIONAL OUTPUT, FORMATED
//K.FT10F001 DD UNIT=DISK,DISP=(,CATLG),SPACE=(TRK,(3,1),RLSE),
// VOL=SER=BATOOC,DSN= KAPER.DATA,
// DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB)
//* UNITS FOR DATA TRANSFER, UNFORMATED
//K.FT15F001 DD UNIT=SYSDA,DISP=(,PASS),SPACE=(TRK,(9,9)),DCB=DCB.VBS
//K.FT16F001 DD UNIT=SYSDA,DISP=(,PASS),SPACE=(TRK,(9,9)),DCB=DCB.VBS
//K.FT17F001 DD UNIT=SYSDA,DISP=(,PASS),SPACE=(TRK,(9,9)),DCB=DCB.VBS
//K.FT18F001 DD UNIT=SYSDA,DISP=(,PASS),SPACE=(CYL,(1,5)),DCB=DCB.VBS
//K.FT19F001 DD UNIT=SYSDA,DISP=(,PASS),SPACE=(CYL,(1,5)),DCB=DCB.VBS
/ /K. SYSIN DD ;'<
*KSIOX DBN=KAPER INPUT,IND=1 ,PMN=PRKAP4,TYP=CARD
;'< $
*$ STEP 1 INPUT PHASE SSXS
;'<$
;'<$ K1
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, 900. '0

o

STEP 2 INPUT PHASE ssxs
'''"$

'ssxs'
'KFKINR

26 6 0 0 0
1000. O.

6
'PU239 900. 'u 238 900. 'PU240
'NA 900. 'FE

,
900.

1 'FE
2 0.31 0.235 1 2

2
1 .0-8 0.0 0.0 0.0
4.3-3 1 .2-2 4. -4 3.3-2

1 -16
"'c$
*$ STEP 3 INPUT PHASE ssxs
'''"$

1 .7-2
0.0

1 .5-2
1 .5-2

, 900.

'PU239
'NA

'ssxs'
'KFKINR

26
1000.

6
900.
900.
1

6
O.

'u 238
'FE

o

900.
900.
'FE

o o

'PU240

o

, 900. '0 , 900.

2 0.31 0.235 3
3

1 .0-8
4.3-3
.1854127-2

0.0
1 .2-2
.5174309-2
1 -17

0.0 0.0 1.7-2 1.5-2
4.-4 3.3-2 0.0 1.5-2
.1724771-3 .1422936-1 .9669717-2 .1499999-1

'''"$
*$ STEP 4 INPUT PHASE ssxs
*$

'PU239
'NA

'ssxs'
'KFKINR

26
1000.

6
, 900.

900.
1

6 -1
O.

'u 238
'FE

o

900.
900.
'FE

o o

'PU240

o

, 900. '0 , 900.

2 0.31 0.235 3
3

1 .0-8
4.3-3
.1854127-2

0.0
1 .2-2
.5174309-2
1 17

0.0 0.0 1.7-2 1.5-2
4.-4 3.3-2 0.0 1.5-2
.1724771-3 .1422936-1 .9669717-2 .1499999-1

'''"$
*$ STEP 5 INPUT PHASE FLUX
"""$
"""$ K1: 'FLUX'

'FLUX'
*$ K2: NHOM NXST NPERT IB KBSQ NGC

o 15 16 26 0 0
IAN IHCS

1 0
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K3: IMIN IMAX EPSPHI EPSKEF
4 20 1.-5 1.-5

K5B: (BSQPARA(K),K=1,NOG),(BSQPERP(K),K=1,NOG) IB>1,IAN>O
O.6181E-02 O.6192E-02 O.5629E-02 O.5214E-02 O.4682E-02 O.3195E-02
O.2250E-02 O.7545E-03 O.1283E-03 O.9598E-04 -O.5251E-03 -O.9357E-03

-O.1429E-02 -O.5181E-02 -O.6483E-02 -O.1005E-01 -O.1516E-01 -O.2757E-01
-O.2301E-01 -O.2061E-01 -O.1085E-01 -O.8730E-02 -O.2038E-01 -O.9632E-02
-O.6883E-02 -O.6354E-02

O.5136E-03 O.5135E-03 O.5226E-03 O.5307E-03
O.6031E-03 O.6842E-03 O.1069E-02 O.1250E-02 O.9464E-03
O.6386E-03 O.5986E-03 O.5007E-03 O.4890E-03 0.4706E-03
O.4461E-03 0.4491E-03 O.4512E-03 0.4680E-03 0.4759E-03
0.4722E-03 0.4861E-03 0.4900E-03

IF MORE=-1

REPEAT NSAM TIMES

NFP NCELL
3 +3

NSAM
2

NTAPE NTAPE1
18 19

NUNPER
o

NXECT
17

MORE
-1

NPERT
16

IH1
1

'PERT'
'PERT'
NFLUX

15
IH
o

ENORM
1 .

(VOID(I) ,1=1 ,NW)
0.5 0.5

NT (TITLE(I),I=1,NT)
2 'TEST1111'
3 'TEST22222222,

*$ K2:

*$ K3:

*$ K4:

*$ K5:

*$ K6:

0.5433E-03
O.6930E-03
O.4581E-03
O.4514E-03

*$
*$ STEP 6 INPUT PHASE PERT
*$
'''$ K1:

"~$

*$ END OF INPUT PHASE PERT
*$
"~$''''$

*GO SM=KAPER4,MPARM=1
1*
11

2) PIN CELL OF AN ADVANCED PWR LATTICE (SOME DATA ALTERED)

1ST STEP: CROSS SECTION PREPARATION FOR PIN CELL
2ND STEP: FLUX CALCULATION, EIGEN VALUE PROBLEM AND REACTION RATES

IIJOBCARD
11'"
11 EXEC KSCLG7
11* DA-UNIT CONTAINING MICROSCOPIC CROSS SECTIONS
IIK.FT01F001 DD DISP=SHR,DSN= G69COLD,LABEL=(",IN)
11* UNIT FOR STORAGE OF KAPER4 GROUP CONSTANTS
IIK.FT15F001 DD UNIT=SYSDA,DISP=(,PASS),SPACE=(TRK,(10,5),RLSE),
11 DCB=(RECFM=VBS,BLKSIZE=16376),DSN=&SSXS
IIK.SYSIN DD *
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IF NI>O

300.
, 900.

300.
300.
300.

--- IF NE>O

1 . -4 1 . - 5
0.000000 0.000000

0.000000 0.000000
2.-4 4. -6

0.000000 0.000000
0.000000 0.000000

1 .35300
.111000
.911800E-02
.906898E-03
.277000E-04
.260000E-05
.112300E-05
.996000E-06
.780000E-06
.320000E-06
. 180000E-06
.580000E-07
.250000E-07

'PU239
'AM241
'MO
'AL
'0

ITRANS
-100

2.23100
.183000
.150300E-01
.142510E-02
.480520E-04
.330000E-05
.115000E-05
.102000E-05
.850000E-06
.350000E-06
.220000E-06
.670000E-07
.300000E-07
.500000E-08

300. 'u 238 '300. 'PU238 900.
900. 'PU241 900. 'PU242 900.
300. ' CR 300.' NI ' 300.
300. 'SI 300. 'CU 300.
300. 'H 300.' C 300.

NISS, IF(NISS.GT.O): (ISON(I),I=1,NISS)
1 'H '

NR , (D CI) , 1=1 , NR) , (M I S CI ) , 1=1 , NR)
.423 .0557 .0563 1 2 3 *$ HEXAGONAL, KGEO=4

NMIX,((CON(J,I),I=1 ,NIS),J=1 ,NMIX)

: 'SSXS'
'ssxs'

: GRSN
'WIMSLIB '
NOG NB KGEO IHI NOR NCHI

69 6 4 6 8-8
GAM EPS

1000. O.
NIS, (ISOT(I),TEMPT(I),I=1,NIS)

*KSIOX DBN=KAPER INPUT,IND=1,PMN=PRKAP4,TYP=CARD
~'<$

~"$ K1

'''$ K5
20
'u 235
'PU240
'FE
'MN
'HE 4
'''$ K6

'''$ K7
3
K8

'''$ K4

,'< $
3
'''$ MIXTURE FUEL
1.-4 2.-2 2.-5 1.5-3 5.-4 1.-4
3.-5 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 4.6-2
*$ MIXTURE 2 CLAD STEEL AIR
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
4.8-2 1.-2 9.-3 1.-3 6.-4 8.-4
4.-6 0.000000 9.-5 0.000000
*$ MIXTURE 3 MODERATOR H20
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 6.6-2 0.000000 3.3-2
*$ K9 : MPERT, NAP, IF(NOR.GT.O):(IS(I),I=1,NOR)

o -15 1 2 3 4 5 6 7 8
'''$ K12: NI, NE

2 +1
'''$ K13: N, (E(K),K=1,N)

69 *$ ENERGY LIMITS IN MEV
10.0000 6.06550 3.67900

.821000 .500000 .302500

.673400E-01 .408500E-01 .247800E-01

.553000E-02 .351910E-02 .223945E-02

.367262E-03 .148728E-03 .755014E-04

.159680E-04 .987700E-05 .400000E-05

.210000E-05 .150000E-05 .130000E-05

.109700E-05 .107100E-05 .104500E-05

.972000E-06 .950000E-06 .910000E-06

.625000E-06 .500000E-06 .400000E-06

.300000E-06 .280000E-06 .250000E-06

.140000E-06 .1 00000E-06 .800000E-07

.500000E-07 .420000E-07 .350000E-07

.200000E-07 .150000E-07 .100000E-07
*$ K14: NAME, TEMP

'u 235 '1.318 *$ NEW MAXWELL TEMPERATURES 1988
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NEW MAXWELL TEMPERATURES 1988

STEP 2 INPUT PHASE FLUX
*$

K1 : 'FLUX'
'FLUX'

'''$ K2: NHOM NXST NPERT IB KBSQ NGC IAN IHCS
0 -15 0 69 1 0 0 -1

"'$ K3: IMIN IMAX EPSPHI EPSKEF
4 20 1. -5 1. -5

""$ K5A:(BSQ(K),K=1,NOG) IB>1,IAN=O
69'''20. -4

'''$ K6: MAXB AKE EBK FAK NBQ IF(KBSQ.NE.O)
5 1. 5.-5 O. O.

'''$ K7A: FAKMAK FAKMIK FAKCHI FAKD IPRINT(O NOPRINT)-- IF(IHCS. LT. 0)
4'''1 . 0

'''$ K7B: IM IRR IZ MSIG MCHI IS IE IF(IHCS.NE.O)
1 8 0 0 0 -1 3

""$ K7A: FAKMAK FAKMIK FAKCHI FAKD IPRINT(O NOPRINT)-- IF(IHCS. LT. 0)
4*1. 1

""$ K7B: IM IRR IZ MSIG MCHI IS IE IF(IHCS. NE. 0)
-1 -8 0 0 0 1 3

*$ K8: (TYPE (I) ,1=1 ,IZ) IF (IZ. GT. 0)
*$ K9: NG (NEWG(I),I=1,NG) IF (IM.LT.O)

1 1
"'$ K10: NUT NUK (NRR (I) ,1=1 , NUK) IF(IRR. LT. 0)

6 1 1
*$
*$ END OF INPUT PHASE FLUX
'''$'''$
>"GO SM=KAPER4
11

--- IF PRECEDING IS.GE.O

3) CROSS SECTIONS OF A SINGULARITY IN CYLINDRICAL GEOMETRY
(ABSORBER SUPERCELL OF A LMFBR HOMOGENIZED)

IIJOBCARD
11**
11 EXEC KSCLG7
11* DA-UNIT CONTAINING MICROSCOPIC CROSS SECTIONS
IIK.FT01F001 DD DISP=SHR,DSN= KFKINR
11* UNIT FOR STORAGE OF KAPER4 GROUP CONSTANTS
IIK.FT15F001 DD UNIT=SYSDA,DISP=(,PASS),SPACE=(TRK,(9,9)),DCB=DCB.VBS
IIK. SYSIN DD ;"
*KSIOX DBN=KAPER INPUT,IND=1 ,PMN=PRKAP4,TYP=CARD
>"$
*$ STEP 1 INPUT PHASE SSXS
;"$
*$ K1 :' SSXS '

'SSXS'
;"$ K2 : GRSN

'KFKINR
*$ K3 NOG NB KGEO IHI NOR NCHI ITRANS

26 6 2 6 3 0 0
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K4 : GAM EPS
1000. O.

900.
, 900.

900.
900.

0.4-2
0.1-1

0.2-1

'PU242
'NA
'FE
'c

0.3-4
0.3-4

0.3-40.4-2
0.5-2

0.2-3
1 . -2

0.4-4 0.2-4
0.1-3 0.2-2
O. O.

IF(NOR.GT.O): (IS(I),I=1,NOR)
156

(ISOT(I),TEMPT(l),I=1,NIS)

1
1 . -2
0.9-2
2
0.3-3
O. 1 -1
O.

MPERT, NAP,
o -15

NlS,KS
16

'PU239
'u 235
'MO
'CR
~"'$ K6

900. 'PU240 I 900. 'PU241 900.
900. ' u 238 '900. '0 I 900.
900. 'NI I 900. 'NB 900.
900. 'B 10 '900. 'B 11 900.

NISS, IF(NISS.GT.O): (ISON(I),I=1,NISS)
o

*$ K7 NR, (D(I),I=1,NR), (MIS(I),l=1,NR)
2 6.0 8.0 1 2

*$ K8 NMIX,((CON(J,I),l=1,NIS),J=1,NMIX)
2

~"'$ MIXTURE
7*0.
0.5-2
*$ MIXTURE
0.1-2
O. 1 -1
0.3-2
~"'$ K9

''''$
*$ STEP 2 INPUT PHASE FLUX
''''$
~"'$ K1: I FLUX ,

'FLUX'
*$ K2: NHOM NXST NPERT IB KBSQ NGC IAN IHCS
*$ IHCS = NR -1 CAUSES CALCULATlON OF A SINGULARITY

o -15 0 26 0 0 1 1
*$ K3: IMIN IMAX EPSPHI EPSKEF

4 20 1.-5 1.-5
~"'$ K5B: (BSQPARA(K) ,K=1 ,NOG), (BSQPERP(K) ,K=1 ,NOG) IB>1 ,IAN>O

7.52-4 7.40-4 7.41-4 7.50-4 7.67-4 7.84-4
7.94-4 7.66-4 7.66-4 8.38-4 8.63-4 12.0-4
14.0-4 16.7-4 19.6-4 22.5-4 25.7-4 29.4-4
30.0-4 32.7-4 26.9-4 -44.7-4 -53.9-4 -29.3-4
17.0-4 31.5-4
26"<0.

*$ K7B: IM IRR IZ MSIG MCHl IS IE IF(IHCS.NE.O)
1 -3 2 0 0 1 1

*$ K8: (TYPE(I),I=1,IZ) IF (IZ.GT.O)
'PE' 'FV'

*$ K10: NUT NUK (NRR(I),I=1,NUK) IF(IRR.LT.O)
6 2 1 2

~"'$"<$

,"GO SM=KAPER4
//




