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PROGRAM ABSTRACT

Name of ProgramVARIANT- a new nodal module of the DIF3® neutronics code.

Computer for which Program is designed and Other Machine Version Packages Available

CRAY X-MP, Sun SPARCstations, IBM RS6000 series.

Description of Problem SolvedVARIANT solves the multigroup steady-state neutron

diffusion and transport equations in two- and three-dimensional Cartesian and hexagonal
geometries using variational nodal methods. The transport approximations involve complete
spherical harmonic expansions up to ordgr P . Eigenvalue, adjoint, fixed source, gamma
heating, and criticality (concentration) search problems are permitted. Anisotropic scattering
is treated, and although primarily designed for fast reactor problems, upscattering options are

also included.

Method of Solution The neutron and transport equations are solved using a variational nodal

method” with one mesh cell (node) per hexagonal assembly (Cartesian geometry node sizes
are specified by the user). The nodal equations are derived from a functional incorporating
nodal balance, and reflective and vacuum boundary conditions through Lagrange multipliers.
Expansion of the functional in orthogonal spatial and angular (spherical harmonics)
polynomials leads to a set of response matrix equations relating partial current moments to
flux and source moments. The equations are solved by fission source iteration in conjunction
with a coarse mesh rebalance acceleration scheme. The inner iterations are accelerated by a

partitioned matrix scheme equivalent to a synthetic diffusion acceleration rhethod .

Restrictions on the Complexity of the ProblemBroblem dimensions are all variable.

Enough memory must be allocated to contain all the information for at least one energy
group. Flux and source expansions of up to sixth order are allowed. Partial current
expansions up to second order are allowed. Angular and scattering expansions gf up to P
are allowed. The typical limiting factor for a problem lies in the storage of response matrices

for problems involving large numbers of unique node types. For highly heterogeneous
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problems involving thousands of different node types, calculation and storage of response

matrices represent the primary computational cost.

Typical Running Time The times provided apply to a three dimensional isotropic problem

for a small LMR with 30 planar symmetry, 9 energy groups, 14 axial mesh planes and 16
rings of hexagons. The problem consisted of 1694 nodes with 24 compositions and 216
unique node types. Each outer iteration required 70 inner iterations (5 groups required 10
inner iterations and 4 groups required 4 inner iterations). The diffusion calculation required
18 outer iterations and the transport calculation required 19 outer iterations. The diffusion
calculation iterations used 41 CPU seconds on a CRAY X-MP/14, 47 seconds on an IBM
RS6000, and07 seconds on a SPARC 20/50. The transport calculation for this problem
(with a B angular expansion) required 231 seconds on the CRAY X-MP/14, 1046 seconds
on an IBM RS6000 and 2183 seconds on a SPARC 20/50.

Unusual FeaturesVariational nodal methods incorporate a number of attractive features.

These include a standard hierarchy of space-angle approximation, well behaved small mesh
limits, and the absence of both ray effects and artificial diagonal streaming depressions.
Dimensionless parts of the response matrices involving integrals in space and angle are pre-
computed once using MATHEMATICA for each geometry option. The results are stored

in FORTRAN data statements and used to generate response matrix sets for unique nodes
(defined by cross section and dimension data) prior to fission source iteration. Anisotropic
scattering (up to order,P ) is also available. VARIANT achieves near Monte Carlo accuracy

at a fraction of the cost.

Related and Auxiliary Programs/ARIANT reads and writes the standard interface files

specified the Committee on Computer Code Coordination (CCCC).
Status VARIANT is currently in use on the Reactor Analysis Division network which

consists of Sun SPARCstations and IBM RS6000 series workstations. Modules for

perturbation calculations, and inhomogeneous nodes are under development.
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VARIANT: VARIational Anisotropic Nodal Transport
for Multidimensional Cartesian and Hexagonal Geometry Calculation

by

G. Palmiotti, E. E. Lewis, and C. B. Carrico

ABSTRACT

The theoretical basis, implementation information and
numerical results are presented for VARIANT (VARIational
Anisotropic Neutron Transport), a FORTRAN module of the
DIF3D code system at Argonne National Laboratory.
VARIANT employs the variational nodal method to solve
multigroup steady-state neutron diffusion and transport
problems. The variational nodal method is a hybrid finite
element method that guarantees nodal balance and permits
spatial refinement through the use of hierarchical complete
polynomial trial functions. Angular variables are expanded
with complete or simplified P ,;P o P spherical harmonics
approximations with full anisotropic scattering capability.
Nodal response matrices are obtained, and the within-group
equations are solved by red-black or four-color iteration,
accelerated by a partitioned matrix algorithm. Fission source
and upscatter iterations strategies follow those of DIF3D.
Two- and three-dimensional Cartesian and hexagonal
geometries are implemented. Forward and adjoint eigenvalue,
fixed source, gamma heating, and criticality (concentration)
search problems may be performed.
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I. INTRODUCTION

VARIANT (VARIational Anisotropic Neutron Transport) isa FORTRAN module
of the DIF3D code systeml at Argonne National Laboratory. It performs multigroup
neutron transport calculations in both Cartesian and hexagonal geometriesin two and three
dimensions. Both forward and adjoint calculations may be performed. Spherical harmonics
are employed to treat the angular variables; at present P1, P3 and P5 approximations are
implemented in all geometries and include both within-group and group-to-group
anisotropic scattering. The spatial dependence of the flux variables is represented by
complete polynomials within coarse mesh nodes, and along internode interfaces.
Polynomials as high as fourth order for Cartesian and sixth order for hexagonal geometries
are implemented.

Solutions of the within-group neutron transport equation are obtained using the
variational nodal method, which originated at Northwestern University and has been
developed in close collaboration with Argonne National Laboratory.2-10 The defining
feature of the method is a variational principle for the even-parity form of the transport
equation in which odd-parity Lagrange multipliers along the node interfaces guarantee
neutron conservation for each node. The well-founded variational formulation allows
computational algorithms to be derived using the classical Ritz procedure: known trial
functionsin angle and in space are used to approximate the flux variables and obtain sets
of linear algebraic equations for each node, with inter-node coupling specified by
concomitant continuity conditions. For computations effectiveness a transformation of
variablesis then employed to reduce the nodal equations to response matrix form.

The systematic use of the Ritz procedure allows well-defined hierarchies of
approximations in angle and in space to be generated. Diffusion or P1 theory is the natural
lowest-order angular approximation to arise from the formulation, allowing diffusion
calculations to be compared easily to higher-order spherical harmonics solutions. The
treatment of the spatial variables parallels hybrid finite element methods. The formalism
allows polynomials of increasing degrees to be used in examining spatial truncation errors
by p convergence as an alternative to the standard h convergence obtained from mesh
refinement. In addition to the standard spherical harmonic hierarchy of angular
approximations, VARIANT's variational formulation is also adapted easily to reduced
angular and simplified spherical harmonics approximations,8:11 thus providing additional
flexibility in trade-offs between accuracy and computational cost.



The foregoing approach contrasts significantly with those nodal methods which
were first formulated and applied with great success for diffusion theory and then extended
to transport theory. They begin with a statement of nodal balance and employ transverse
integration procedures to obtain approximate quasi-one-dimensional equations whose
solutions provide the necessary auxiliary conditions. While highly successful in obtaining
fast, coarse mesh diffusion solutions, these approaches have been confounded to some
extent by the complexity of space-angle coupling found in the transport equation.
Difficulties have been encountered in going beyond spatially flat interface assumptions and
in reconciling the angular approximation within the nodes with those along the interfaces.
Such methods provide only one space-angle "transport approximation™ and allow neither
space-angle refinement to examine truncation error nor straight-forward provisions for
reconstructing intranodal flux distributions. Moreover, they provide neither the capability
to treat anisotropic scattering nor straight-forward provisions for adjoint calculations.
Discrete ordinate nodal methods circumvent some of these shortcomings by using a
standard Sy hierarchy of angular approximations, but they have not been devel oped
sufficiently for reactor calculationsto evaluate their potential. More extensive discussions
of competing nodal transport methods may be found el sewhere. 12,13

As amodule of the DIF3D code system, VARIANT makes extensive use of other
system modules to perform those operations which do not pertain either to the generation of
the response matrices or to the within-group solution algorithms. These include node
generation, outer iteration on the fission source and its acceleration, input of both geometry
and cross section files and output editing. Substantial modifications were made to handle
the input of anisotropic scattering cross sections, which had not been a part of the original
DIF3D code.

A unique feature of VARIANT isthe central role played by symbolic manipulation
in generating the nodal response matrices. For each new geometry or level of space-angle
approximation, the Ritz procedure spawns many - in most cases thousands - of
multidimensional integrals over known trial functions. Error-free evaluation of these large
arrays of integrals is intractable by hand. However they are easily put in dimensionless
form. Thus we utilize symbolic manipulation in the form of the Mathematica software
packagel4 to automate the analytical evaluation of the integrals. The resulting arrays of
numbers are stored as DATA statements in the FORTRAN subroutines which generate the



response matrices. Thus the symbolic manipulation is performed only once for each new
geometry or for each new approximation in space or angle which isadded to VARIANT.

Since the variational nodal equations are cast in response matrix form, VARIANT
is also able to make extensive use of existing coding in the nodal optionl> of the DIF3D
code. The node numbering and other data handling capability for performing red-black or
four color response matrix iterations in Cartesian and hexagonal geometries, respectively is
retained in VARIANT. Nodal coding previously developed by R. Lawrencel>1/ also
serves as an excellent point of departure from which to implement the partitioned matrix
algorithm developed for VARIANT to accelerate the iterative solution of the within-group
response matrix equations.

The remainder of this report is organized as follows. In Chapter 2 the variational
nodal method is described and the derivation of the response matrix equations presented.
Special attention is given to the treatment of boundary conditions and inclusion of
anisotropic scattering. In Chapter 3 the response matrix solutions algorithm and the
partitioned matrix acceleration techniques are described. In Chapters 4 and 5 respectively
numerical examples and user information are presented.



1. THE VARIATIONAL NODAL METHOD

In this Chapter we set forth the theory behind the variational nodal method and
derive the linear algebraic equations used in the resulting multigroup response matrix
algorithm. For simplicity, in Sections II. A and B we first formulate the problem and
discretize the equations assuming isotropic scattering, and make use only of some of the
more general properties of the space-angle approximations. In Section I1. C we then
examine the spherical harmonics approximation, the associated boundary conditions and
gpatia approximations in more detail. In Section 11. D we generalize the variational nodal
method to include both within-group and group-to-group anisotropic scattering. Finally, in
Section 1. E. we present the symbolic manipulation evaluation of the integralsinvolved in
the coupling coefficient calculations.

1. A. The Variational Formulation

In this section we present the variational basis for the computational algorithms
which constitute the variational nodal method. We begin with the within-group transport
equation with isotropic scattering and sources:

Q@m0 (|¥[r,0)= [ dorjun@)+ ) (2.1)

where o is the total cross section, and 05 is the within-group scattering cross section; W
represents the angular flux and S the group source; r and Q are the neutron position and
direction of travel. In the following subsections we first rewrite this equation in even parity
form, and then set forth the variational principle and its properties. The section concludes
with a demonstration of the nodal balance property of the variationa principle.

1. A.1 The Even-Parity Equations
The definitions of the even- and odd-parity flux components are

Wr,Q) = 1 [Wr,Q) + ¥r,-Q) (2.2)
and

[W(r,Q) - Wr,-Q (2.3)

Nl

X(r,Q) =

’



respectively. To formulate the problem variationally, we first obtain the even-parity
equation with isotropic scattering and sources. Thisis accomplished by first evaluating Eq.
21a and Q and at -Q and then adding one half of the resultsto obtain

QI (r, Q)+ o(r)y(r,Q) = OS(r)f dQ'Y(r, Q@)+ gr) . (2.4)

Likewise, subtracting the results yields

Qmi (r,Q)+ o(r)x(r,Q)=0 . (2.5)
The even-parity equation,

Ol ' QMY +oy = o +S, (2.6)
isthen obtained by using Eq. 2.5 to express the odd-parity flux intermsof ¢ as
X = - o Qi (2.7)
and then eliminating it from Eq. 2.4.

The scalar flux iswritten in terms of the even-parity flux as

® =f dQy , (2.8)

and the current vector in terms of the odd-parity flux as

J= JdQQx . (2.9)

Thus combining Egs. 2.7 and 2.9, we have

= - 0'1f doQomyp . (2.10)

On reflected boundaries, both even- and odd-parity flux components must meet the angular
symmetry conditions. Vacuum boundaries may be shown to reduce to the conditions!8

W(r,Q) =X (r.Q) nQ:0 (2.11)

where n isthe outward normal on the vacuum surface.



1. A.2 The Nodal Variational Principle

The even-parity transport equation may be formulated as a variational principlein
terms of a global functional, F, which is a superposition of volume and surface
contributions from the v spatial nodes and y nodal interfaces comprising the problem

domain;

Fuwx/=> Rlux], (2.12)

where the contribution from nodev is
SE f dV{ f dolo (Qmp )2+ oy? ios<p212(p5}+ 2 f aT f doQnyx  (2.13)

In the absence of the interface term containing X , Egs. 2.12 and 2.13 reduce to the

functional first formulated by VIadimirov19, and since used as the basis for many finite-
element and related approximations to the transport equation. The use of X asalagrange
multiplier at node interfaces is the unique feature which differentiates this functional from
previous even-parity variational formulations and givesrise to the variational nodal method.
For as we shall see, the continuity requirements of more conventional spatial finite
element approximations are relaxed, while neutron conservation is enforced on each node.

Requiring this functional to be stationary with respect to variationsin  and X may
be shown to lead to the even-parity Euler-Lagrange equation within each node and the

continuity of both even and odd-parity fluxes across the interfaces. Thisis accomplished
asfollows.1® Supposewelet Y, be the reference even parity flux for r OV, and Xy the

corresponding odd-parity flux for r T , . Next, we examine the effect of taking arbitrary

variations about the reference functions:

Y=y, +oy , rav, (2.14)

x:xy+6x . rim, (2.15)
Substituting these variationsinto Eq. 2.13, we may write

R[W, *+ 8WXy + 3X| = R[WyXy| + SR[WX] + R[WX] (2.16)

where the three terms on the right are referred to respectively as the zero, first and second
variations with respect to Y and x . The zero variation isjust Eq. 2.13 evaluated with the



reference solution, while the second variation contains only products of the variations,
(5l]J)2 and OYdyx . Here, thefirst variation is the focus of interest, since for the functional
of Eq. 2.12 to be stationary, the first variation must vanish.

The contribution of nodeV, to the first variation may be written explicitly as

o (QmBY |Qmiy , + O'L|JV5LLI] -3¢ (0@ + S)\

SR, x]zzfv dv{ f do

J
,2 fy a f 40O (X 3 + 5| (247

To put the first variation in more transparent form, we utilize the identity
ol (QIbyY JOmpy ,=+5p Qb QM ,+ MR spo’Qmp | , (2.18)
along with the divergence theorem,

fv v j dQQMIFY @M )= f dr f d0QM Sy QT | (2.18a)

and
f dQSY = 3¢ (2.18b)

to rearrange terms and obtain

6Fv[¢,x]:2fv dvf dQéd,{iQ[l]b QM |, +oy,+ 0 +S

(2.19)
2 f T f dQQy5L|,< olom V+xy)+ 2 f drf dQOm, y,3x
Y Y

Requiring Eq. 2.12, the global functional, to be stationary is equivalent to
requiring the first-order variation to vanish:

SHw.x|=> OR|wx]=0. (2.20)

Thus, the volume term from each &F, must vanisn if dF isto vanish. But since o within

each node is arbitrary, this takes place only if the bracketed term in Eq. 2.19 vanishes. But
this term and Eg. 2.6 are identical. Thus within each node, the even-parity transport
equation isthe functiona's Euler-Lagrange equation.



The terms over the internal interfaces must be treated somewhat differently.
Consider the interface between nodes V,, and V,,. Any such interface, designated by

Fy and ny, is opposite another node interface, say Fy, and ny , such that Fy, = Fy and

ny =xn, . From Eq. 2.19 we see that the contribution of this interface to the variation

of Eq. 2.20 may be written as the sum of just two integrals,

-1 -1
2 j dr j dOQR Y oMy , + olomy |, )+ va da f dQam, ox (W, £W.) ) o,

since the xy6L|J terms in the second integral of Eq. 2.19 cancel. For the second term to

vanish with arbitrary variations, the even parity flux must be continuous across the
interface. Likewise, for the first term to vanish the flux gradient terms, which are seen
from Eq. 2.7 to represent the odd-parity flux, must aso be continuous across the interface.
Thus the exact interface conditions are met. Finaly, note that discontinuities in the cross
sections at the node interface have no effect on the foregoing argument (we would need
only to place nodal subscripts on the cross sections).

We have yet to consider the boundary conditions on the outer surface of the
problem domain. The functional is not varied on reflective boundaries. Rather, the
essential symmetry conditions are imposed on the angular distribution of even- and odd-
parity fluxes. This causes the Yx term in Eq. 2.13 to be identically equal to zero on
reflected boundaries. On vacuum boundaries, the replacement of the Yx term with the
integral

f dr f dQ [n/Q 2 (2.22)
Y

yields Eq. 2.11. These are referred to as modified natural boundary conditions. We shall
return to a more detailed trestment of boundary conditions.

Before proceeding, we observe that the natural lowest-order angular approximation
with the foregoing variational formulation is the diffusion or P1 approximation. If we

require the even-parity flux to be independent of angle, Y(r,Q) - @) , and likewise take
X (r,QQ) - 3QL(r) , the diffusion equation becomes the Euler -Lagrange equation, and

continuity of the scalar flux and normal current component across interfaces isimposed by
the Lagrange-multiplier term.



1. A.3 Nodal Balance

An important property of the nodal formulation is the imposition of neutron balance
over each node. Nodal balance may be demonstrated as follows. Suppose we define the
volume-averaged scalar flux for a particular node as

o= enav (2.23)

and write the even parity flux as
W(r.Q) =@ +y,r.Q) (2.24)

where the second term isrequired only to be orthogona to @:

dv| dQ w.(r,Q) =0. (2.25)
Joev]

Likewise, we define the average source as

S=y| StV (2.26)
and write

S() =S +S,(r) (2.27)
with the orthogonality condition

f S,(dv =0. (2.28)

If we insert Egs. 2.24 and 2.27 into the functional given by Eq. 2.13, and utilize
the orthogonality conditions, and the definition of J, we may rearrange termsto obtain

RIW, X1 = (0 £ OV @ £ 2V, G5 + 2c‘pf drn,3
' (2.29)

a dv{ [ oot j@my o+ ow|zad [ quJO)Z }+ 2jy a [ a00m yox

Notethat only the first threeterms contain @. Thusif welet @ - @ + 0@ and require F,
to be stationary with respect to arbitrary variations 6@, we obtain the nodal balance
equation
(O+OIVyP + f drn@=V,3 (2.30)
Y



which just states that absorption plus leakage must be equal to the number of source
neutrons produced in the node. This proof that nodal balance is preserved whether
Y, represents the exact solution or only some approximation thereof. The approximate
case is very important, for it states that nodal neutron balance is maintained, independent
of the even- and odd-parity flux approximations which are used.

1. B. Transport Equation Discretization

In this section we utilize the foregoing variational formulation to discretize the
transport equation and obtain a set of linear equations suitable for efficient numerical
computations. Accomplishing this entails choosing a suitable set of space-angle trial
functions and employing it in aclassical Ritz procedure. The equations which result from
the Ritz procedure are then cast in a form suitable for within-group response matrix
calculations. These, in turn, are embedded in a multigroup formalism. The choice of trial
functionsis central to the devel opment of accurate and computationally efficient methods.
Generally, we utilize orthogonal polynomials in space and spherical harmonics in angle.
We defer, however, a detailed discussion of trial functions and their associated boundary
conditions to Section Il. D. In this section, we need specify only some of the more general
properties of the trial functions necessary to carry out the discretization.

1. B.1 The Ritz Procedure

The classical Ritz procedure consists of approximating the dependent variable or
variables in a variational principle with a set of known trial or basis functions, and
determining the unknown coefficients by requiring the functional to be stationary with
respect to variationsin the coefficients. We apply the Ritz procedure by approximating the
even- and odd-parity fluxes as separable expansions of spatial and angular trial functions
with unknown coefficients. With the convention hereafter that repeated English (but not
Greek) subscripts imply summation, these take the form:

Wr.Q) = fi(n g Q)tim r OVy (2.31)
and
X(r.Q) = hifrknd Qxiny . rOTy (2.32)

Since, at present, only isotropic scattering is considered, the even-parity group sourceis
independent of angle and may be approximated as
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Sr) =fir)s rovy (2.33)
and the scalar flux as
@r) = fi)Sylim - roOVy (2.34)

In the foregoing equations the {jm and Xjny are arrays of unknown coefficients, and
the s; are source coefficients. The fi(r) and hj(r) represent spatial basis functions which

are complete polynomials. They are orthonormal over the node volume and surfaces,
respectively, meeting the conditions

f (DAY = &, (2.35)

and
[WYGLINGL (2.36)
Y

The angular basis functions, g;(Q) , within the node are even-parity spherical harmonics

meeting the orthonormality conditions
| gHQIH@AR = By (2.37)

The odd-parity basis function, k() , along the interfaces consist of odd-order spherical

harmonics; their form is discussed further in Section 11. C.

Inserting the expansions of W, X, and S into Eq. 2.13 results in the reduced
functional

IZV[Zim’ Xjny] = Zim’A‘ri]iq’m,Zi’m' ) 2Z'imSm + 22 Zim'vlirjrl/nxjny (2.38)
Y

where for convenience we have defined si,, = §y,s; . The matrices in this equation are
defined as

mm' '
Ai =07t PRH™ +V8ii{08mm - O3 1mBim) (2.39)
and

mn

ijy = DijyEmny . (2.40)
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Each of the elements of these matricesis given in terms of integrals over known spatial or
angular tria functions as defined in Table|. The isotropic source moments are given by

5 = f dvE(r)gr) . (2.41)

The reduced functional may be written in a more compact form by defining ¢ and
Xy as partitioned vectors formed from the successive columns of {,, and Xjny, which are
the arrays of unknown coefficients. The resulting functional appears as

RIC X =CAL-20"s+25 TTMx, | (2.42)
Y

where the partitioning of A, sand M is consistent with that of ¢ and Xy. We may
eliminate the sum over the surfaces by defining a single vector over the surfaces

X" = [XIX X (2.423)

and the corresponding coupling matrix

M :[Ml,Mz,---,My,---]. (2.42b)

Equation 2.42 may then be written as

RIL X1 = TAT-20"s+ 20'M (2.42¢)
Requiring the functional to be stationary with respect to variationsin T then
yields
{=A"s-A'Mx . (2.43)
The variation with respect to Xy across an interface leads to the requirement that

W, =MZ (2.44)

be continuous across each interface. Thus for the surfaces of the node we form an even-
parity vector, whose subvectors are the P, in terms of the internal trial function ¢:

Wp=MTT. (2.444)
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Combining EQgs.2.43 and 2.44a, we have
p=M"A%s - MTA MY . (2.45)

This equation relates the even-parity flux moments on the node interfaces to the source
moments within the node and to the odd-parity flux moments on the node interfaces.

1. B.2 Multigroup Response Matrix Equations

Equation 2.45 may be viewed as a generalization of the T-1 form of awithin-group
response matrix equation, which has previously been developed only for diffusion
theory.21 To obtain a response matrix in conventional form, we introduce the change of
variables

=iwEax (2.46)
where j* and j* are, respectively, outgoing and incoming partial current-like moments,
each integrated over the corresponding node surface ry-In the diffusion approximation

these reduce to the partial currents. Inverting Eq. 2.46 then yields

Pp=2(G"+j9 (2.46q)
and

X=j*j*. (2.46b)
Combining Egs. 2.45 and 2.46, we may then write the nodal response matrix equation in
theform

i"=Bs+Rj, (2.47)

where
R=[G+IYG-I] (2.48)
B=[G+I['C (2.49)

The matrices G and C are partitioned into submatrices defined for each interface. The
submatrices are defined as

A N ¥
Gyy=5MyA™M,, » (2.50)

and
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P P (2.51)
Cy=,MyA

Once the partial current moments are determined, the even-parity flux moments for the node
interior can be determined from the coefficients given by Eq. 2.43. Using Eq. 2.46b, we
have

(=A"s-2¢Tj*-j7) (2552)

where the first subvector @ of thevector { containsthe scalar flux moments.
The multigroup coupling equation for group g is given in the standard form

X

S :?gvcfg,cpg, +Ogy@y (2.53)

where the cross section notation is conventional. With the scalar flux expanded in each
group asindicated in Eq. 2.53, we obtain

Sgi =K 81X VOi1g Lgrio + Ogg Lgio (2.54)

where the subscript g is added to the source moments to denote the energy group, and we
continue to use the shorthand notation s, = &y,s; . The group source moments depend

only on the corresponding scalar flux moments, {gio, in the higher energy groups, g'<g.

II. C The Spatial and Angular Trial Functions

We next examine the trial functionsin space and angle in more detail. In choosing
the level of the spatial approximation, attention must be given to the rank of the matrix
which couples the nodal to the interface approximations. Likewise, care must be taken in
the coupling of the angular approximations if the classical spherical harmonics equations
are to be obtained.

1. C.1 Spatial Approximations

The spatia tria functions are taken to be complete polynomials both within the nodes and
along the interfaces. The interna polynomial istaken to be of a higher order than that on
the interface. In cases where there are relatively few response matrix types, thereis little
penalty in making the interior polynomial of high enough order that they differ little from
the exact spatial solution. However, in problems with many response matrix types, the
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formation of the response matrices, particularly the inversion of the A matrix, becomes
expensive as the dimension of the A matrix grows with the number of space-angle trial
functions. Therefore an important question is that of determining the lowest reasonable
order for the complete polynomial for the node interior.

An important criteria is that the D matrix must have full rank.22 Spatial
approximations which result in rank deficient matrices prevent convergence of the red-black
response matrix solution algorithms from being carried to completion. Round-off errors
introduce extraneous solutions which do not grow, but persist in preventing eigenvalue
calculations from being converged beyond the sixth or seventh decimal place.

1. C.2 Angular Approximations

The even- and odd-order spherical harmonics angular trial functions appearing in
the g and k vectors must be specified with care. Variational nodal methods based on
spherical harmonics expansions solve the even-angular-parity flux equations within the
nodes, while continuity between nodesis provided by even- and odd-parity flux moments.
In three-dimensional odd-order Py approximations, there are N(N+1)/2 coupled second-
order differential equations within each node. There are, however, N(N+1)/2 even- and
(N+1)(N+2)/2 odd-parity moments across the interfaces. Thus N+1 odd-parity continuity
conditions must be eliminated, since additional conditions would result in an over-
determined set of nodal equations. To derive general Py approximations, we turn to the
use of the Rumyantsev interface conditions.23 As detailed elsewhere,® the Rumyantsev
conditions are identical to those imposed by the variational nodal functional, provided the
choice of odd-parity trial functions is restricted to those that result in a full rank matrix
coupling odd- and even-parity moments. Thisis accomplished most ssmply by deleting the
Yntn termsfrom the odd-order interface expansions.®

To apply the odd-order Py approximation to the foregoing functional we expand the
even- and odd- parity fluxesin terms of the spherical harmonics defined by

cos(aw) p=0,1,2[IN

Yol Q) =CoP(1t) sin(qw) |q|=0,1,2[mp

(2.55)

where Pi(11) are the associated Legendre polynomials. The coefficients C,, are chosen
such that
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f Yo @)Y 5g(Q)dQ = 8,8 (2.56)

and we follow the convention that g=0 signifiesthe cosine seriesand q<0 the sine series.
Within the nodes, we approximate the even-parity flux by

_ p =0,2,40N-1
Q) =3 Vi (@)3,(r) - wooaomp (257
At the interfaces we employ the odd-parity flux approximation
_ p=1,3,50N
X(r!Q ) - ; qu (Q ) qu(r ) ’ ‘q‘ - Oyl’zmb_l (258)

where the angles in the odd-parity expansion are defined in terms of n, the outward normal
to theinterface. A central point isthe deletion of the Yptp, p=1,3,5,...N terms from the
odd-parity expansion of Eq. 2.58. These deletions yield the correct number of odd-parity
interface conditions. Equally important, it is demonstrated elsewhere that the resulting
spherical harmonics formulation satisfies the Rumyantsev interface conditionsand results
in a full-rank coupling matrix between the even-order spherical harmonics expansions
within the nodes and the odd-order expansion at the interfaces.®

We may write the variational nodal form of the spherical harmonics equations
compactly by first expressing the expansions of Eqgs. 2.31 and 2.32 as vector
relationships. Definethe vector of even- parity angular trial functions g'(Q) as

g(Q)T :[YOO’Y2—2’Y2—17Y20'Y21’Y22,Y4-4’ (2.59)
and a corresponding vector consisting of the odd-parity trial functions kny(Q) :
k(Q)T =[Y10,Y3_2,Y3_1,Y30,Y31,Y32,Y5_4, . (2.60)

The foregoing conditions are general and may be applied to any odd-order
spherical harmonics approximation. In earlier implementations of the variational nodal
method a somewhat different form of the interface conditions were used in P3

approximations.2-7  For the three-dimensional P3 approximation the correct number of
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odd-parity conditions may be obtained by requiring continuity of the Py(u ), P1(n), P1(%)
and P3(u), P3(n), P3(§) moments, where i is the direction cosine perpendicular to and n
and & parallel to theinterface. These moments have lead to consistently accurate numerical
resultsin two- and three-dimensional calculations.

The fortuitous correspondence of the number of required conditions with the
number of odd-order Legendre polynomials with direction cosines perpendicular and
parallel to the interface, however, holds only for the P3 approximation. They therefore
cannot be extended to P5 or higher approximations. Moreover they do not satisfy the
Rumyantsev conditions and result in an angular coupling matrix which is rank deficient.
Unlike rank deficiency in the spatial trial functions, there seems to be no effect on
convergenceif it appearsin the angular variables.

A number of other angular approximations are also be employed within the
framework of the variational nodal method to reduce the number of interface basis
functions without a commensurate loss of accuracy. The reduced8 11 and the simplified
spherical harmonicsB approximations are discussed elsewhere. With any set of angular trial
functions used to approximate the transport equation, one must also specify a compatible
set of approximate boundary conditions. Both reflected and vacuum boundary conditions
are included in VARIANT. These two classes of conditions are treated somewhat
differently, since in the variational formulation, reflected conditions are "essential" and
must be imposed on the trial functions, while vacuum conditions are "modified natural” and
are incorporated into the variational format through the addition of appropriate surface
terms to the functional .

1. C.3 Reflected Boundary Conditions

With the foregoing angular trial functions, the Rumyanstev interface conditions are
satisfied by requiring g, and X, to be continuous across nodal interfaces. The

components of the vector X, are the odd-parity expansion coefficients x;, aong the
interface. In contrast, the vector |, is expressed by Eq. 2.44 as a linear combination of
the even-parity coefficients ¢, within the nodes. In expanded form these linear

combinations may be written as

quny: DiijerZim . (261)

Reflected boundary conditions are essential in the variational formulations and
therefore must be imposed directly on the y,,, and x;,, coefficients. To do this, we first

17



note that the index n in the {,,, and ¥x;, coefficients corresponds to the odd-parity
spherical harmonic ordering in the vector k(Q) as defined in Eq. 2.60.

As shown elsewhere,® the angular symmetry conditions for reflected boundary
conditions are satisfied if the ), coefficients are set equal to zero for values of n

corresponding to Ypq with even g, and the ¥;,, coefficient are set to zero for terms
corresponding to odd g. Suppose we partition the vectors of interface vectors according to
even and odd values of q:

"l 0 @ez
Then the reflective boundary conditions are then
PY,=0 Xe=0 rdr, (2.63)
and therefore the scalar product vanishes:
WX, =0 rofr,  (264)

This result, combined with Eg. 2.44, causes the Lagrange multiplier term '™ WXy to

vanish for reflected boundaries from the reduced functional, Eq. 2.42 and from
subsequent equations. If Eqgs. 2.63 are inserted into Eq. 2.46 for the partial current
moments, we obtain on reflected boundaries

S S
Je=le Jo="]o rl:'rr (2.65)
which are the conditions employed in the response matrix solution algorithm.

1. C.4 Vacuum Boundary Conditions

Vacuum boundary conditions, in contrast to reflected conditions, are modified
natural boundary conditions. By modifying the functional with an appropriate surface term
along the vacuum, the exact condition is obtained by requiring the functional to be
stationary along the boundary. There are three waysin which this characteristic of vacuum
boundary conditions can be incorporated into the computational agorithm.
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The first is the classical approach described in Section I11.A. We remove the
Lagrange multiplier integral from Eq. 2.13 along the vacuum boundary and replace it with

the integral, shown as EQ. 2.22. Then when the functional is required to be stationary with
respect to variations oy (r,Q), r O, the correct vacuum boundary conditions results.

However, it isin terms of the gradient of the even parity flux rather than the odd-parity
Lagrange multiplier with which we would like to work. For if the Ritz procedureis applied
using this formulation, the partial current moments along the vacuum boundary are
eliminated, and the condition is incorporated into a response matrix of reduced dimension.
This approach is awkward to apply, gives rise to response matrices which are boundary-
condition-dependent and is difficult to incorporated into iterative solution algorithms for
the response matrix equations.

The foregoing difficulty is circumvented by retaining the odd-parity Lagrange
multiplier on the vacuum boundary as follows. Instead of replacing the vacuum surface
term in the functional by Eq. 2.13, we add the following term consisting of two integrals,

| = f dr f do |n@ |y - 2 f dr f dQ n@Y’x (2.66)
toyield

Rjw,x|= f dVv{ f do[o™ (Qmip )2 +oy’] xo9’} -2 f dVS

(2.67)
" 2f a f dQQmYY + f dr f 40| Qm|y” - 2 f ar f dQQmYY

Requiring the functional to be stationary with respect to dx(r,Q) along the vacuum

boundary then yields  (r,Q) =y '(r,Q) . When combined with this condition, the

variation 3Y'(r,Q) then yields the correct vacuum conditions given by Eq. 2.11.

To apply the Ritz procedure, we approximate " and x similarly to Eqgs. 2.31 and
2.32 on the vacuum boundary,
W(r,Q) = (NI Q)¢ rOr, (2.68)
and
X(r, Q)= hiy(OknfQhioy ror, (269)

Equation 2.66 then takes the form
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I = ZimWii'yL mn’{yz Iil'm' T ZZimDiijmnijnya (270)

where elements of the L and W arrays are given in terms of the angular and spatial trial
functions respectively in Table 1. Defining

m _
I\Iirir']y - VVii'yl— mm (2.71)
and utilizing the definition of M w we may rewrite Eq. 2.70 as
_ n m n n
1= CnNity G £ 2imMifyXjny - (2.72)

Writing this expression in vector form and adding it to the reduced functional given by Eq.
2.42 then yields

RIG X =TAT- 2005+ 25 UM x, + TN, T £20'My X, (2.73)
Y

Requiring the reduced functional to be stationary with respect to variations dx yields =
on the source-free vacuum boundary and likewise taking 5 yields

N =M X, (2.74)
Eliminating { between these results and solving for Z yields

2= NyMx, - ror, (2.75)
Then applying Eg. 2.44 to obtain the even-parity surface variable, we obtain the vacuum

boundary condition:
g, = MJN;'Mx, . (2.76)

Finally, if we make the transformation of variablesto the partial current moments defined
by Eq. 2.46 we have

+

+1
S R ) (2.77)
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A somewhat simpler form of the vacuum boundary condition can be obtained by
applying the requirement that the reduced functional be stationary only with respect to the
angular variables. We begin again with the integrals of Eq. 2.66, but this time we expand
the even- and odd-parity fluxes only in angle, allowing arbitrary spatia variation,

W'(r,Q) = gr{Q)Z,(1) rOr, (2.78)
X(r,Q) = KnQ)Xnfr) - rOr,(2.79)

Equation 2.66 then reduces to a difference of spatia integrals
= f ALl oty 2 f d L Emngny (2.80)

Taking the appropriate variations now yields Z}n: {m and meyZ',}], = Emw)(ny ,

which in matrix form may be expressed as

L = Ex ror, (2.81)

respectively. Therefore solving for { and combining the result with Eq. 2.44 yields the
vacuum boundary condition

W= ELEY . ror, (282

It may be shown with Eq. 2.46 that on the vacuum boundaries may be expressed in terms
of the partial current moments as

o T, -1 -1 T -1 i
= ETLE 41T ETLE 1) rOr, (2.83)

Here however ¥, X and the corresponding partia current vectors are spatially dependent,
meaning that unlike Eq. 2.77 which imposes the condition only on the m spatial moments,
here it isimposed at each point r on the vacuum boundary. Thisistoo strong a condition.
It may be relaxed, however, by requiring that Eg. 2.83 hold only for the spatial moments
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Ldrhjny(r)tpny(r) and Ldrhjny(r)xnv(r) and therefore for the corresponding

vector of thejiJr’]y and ji“f]y :

II. D Anisotropic Scattering

With the methodology thus far developed, we are now prepared to generalize the
variational nodal method to include anisotropic scattering. The arguments contained in the
preceding section concerning trial functions and boundary conditions remain valid. Thus
we need only to repesat the operations of Sections|I. A and B in generalizing the variational
formalism and obtaining the multigroup response matrix equations with anisotropic
scattering.” Our starting point is the within-group transport equation with anisotropic
scattering:

QI o ()Y, Q)= f dQ'or, Q@ Y1, Q) + S1,Q) . (289)

where o is the total cross section, and as is the within-group anisotropic scattering cross
section; W represents the angular flux and S the anisotropic group source.

1. D.1 Variational Formulation

To formulate the problem variationally, we must obtain the even-parity equation
with isotropic scattering and sources. Thisis accomplished by first using the even-parity
flux definitionsin Egs. 2.2 and 2.3 to obtain the following pair of second order equations
which are generalizations of Eq. 2.4 and 2.5

QlIx (r,Q)+ o(r)qJ(r,Q):f dQ'o™(r, Q@ )y(r, Q') + S'(r,Q) (2.85)
and
QMmip (r, Q1+ o(r)X(r, Q) = f dQ'o7(r, Q@' )X(r, Q') + S{r,Q) ,  (2.86)

where we have divided the anisotropic scattering kernel into even- and odd-parity
components, o* and o~, each of which is expanded in spherical harmonics of

corresponding parity,
o#{r Q') = 0, (1)g-(Q)gH(Q') (2.87)
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Again repeated English indices denote summation, and the anisotropic cross section
components, oy, do not contain a factor of 20 +1 (see reference 7 for a discussion of the

expansion of the scattering kernel). Combining equations yields

x=- olQmp +0ls - o2 f dQ' 6 (Q@)| Qmp @')-S(Q)| , (2.88)
where for brevity we have defined
alom)=(1 - aWo)” omgm(Qlor{Q) . (2.89)

Since Eg. 2.88 is an explicit relation for x in terms of the even-parity flux and group
source, we may substitute it into Eq. 2.85 to obtain the within-group even-parity equation
with anisotropic scattering included:

O lQmp - Qb 2 f dQ'G QM) QY @)+ oy =
(2.90)
f dQ'c Q@ Y(Q) + S* - QB '1[5'+o-1 f dQ'51Q@)S(Q)].

The variational functional for the even-parity transport equation may be generalized
to include anisotropic scattering termsin the foregoing equations. The global functiona, F,

is a superposition of volume and surface contributions as in Eq. 2.12° With anisotropic
scattering, the contribution from nodev is

R0, X|= fdvfdQ (Qmy )2+ oy?
f dV\c GZ[ f dQg;. Qi } W{ f dag’, r} 22 f dvf doy s* (2.91)
+2fv dvj doQmiyo '1[S'+0'1f dQ'a'(sz')S'(Q')}+2fv T j doQmyy .

Requiring the functional to be stationary with respect to variationsin § yields Eq. 2.90 as

the Euler-Lagrange equation within V\, and Eq. 2.88 aong the interfaces. The continuity
of Y acrossthe interfacesis assured by requiring the functional to be stationary with respect
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to interface variations in X, while the continuity of X isimposed by Lagrange multiplier
terms applied on nodal interfaces.

1. D.2 Within-Group Equations
A Ritz procedure employed to obtain the nodal response matrices for each energy
group parallels the isotropic case. We first approximate the even- and odd-parity fluxes as

separable expansions of spatial and angular trial functions, asin Egs. 2.31 and 2.32. The
even- and odd-parity group sources are expanded as

str.Q) = fi(r)g(Q)s’, rdVy (2.92)

where the source coefficients are given by
- f dQ gt St (2.93)

Inserting the expansions of W, X, and S into Eq. 2.91 results in the reduced
functional

I:{Zim' Xjny} Z|m i’ Zi'm ZZ|m§m ZZ|m i’ g_’m’-'—zg Zim'vlri];;xjny (2.94)

This differs from the isotropic scattering case in two respects. First, in the A matrix
additional terms augment the isotropic case to account for the within-group anisotropic
scattering:

AT = AT+ oG TGV + V810 B g (2.95)
Second, the even- and odd-parity source moments:

st = f dVE{(r) f dgt(Q)SHr.Q) . (2.96)

appear in conjunction with the array

T = (0-0, ) U V™ (2.97)
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which operates on the odd-parity source. These are required to treat the anisotropic group-
to-group scattering. The U and V matrices, which do not appear with isotropic scattering,
are given in terms of the known angular and spatial trial functions. They are included in
Tablel.

Aside from the division of the group source into even- and odd-parity components
the reduced functional is quite similar to itsisotropic counterpart given in Eq. 2.42.

RIC X1=TTAT-2Ts"- 20 Ts+ 2 TTMx, (2.98)
y
Requiring the functional to be stationary with respect to variationsin T thenyields
(=AY +AMTs - > AM Xy - (2.99)
y

while the variation with respect to Xy across an interface again yields Eq. 2.44. Taken
together, Egs. 2.44 and 2.99 yield aresult analogous to Eq. 2.45:

P, =MA"s' + MJA™Ts - Z MIAM, X, . (2.100)

To obtain response matrix equations, the partial current variables defined by Eq. 2.46 are
again introduced. Theresultis

jT=B's"+Bs+Rj (2.101)

where R is defined as before by Eq. 2.48, while in the source moment terms

B* =[G +I'1C (2.102)
and
B-=B*T . (2.103)

For anisotropic scattering, however, A isreplaced by A in the definitions of the G and C
matrices. Analogous to Eg. 2.43, the even-parity flux moments for the node interior are
given by

{=ATs +AMs - 2cT* - (2.104)
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1. D.3 Multigroup Coupling Equations

In the case where only within-group anisotropic scattering is included, the odd-
parity source term vanishes and the even-parity source includes only scalar flux moments
from other energy groups. The anisotropic scattering terms thus affect only the magnitudes
of the R and B matrix elements. With group-to-group anisotropic scattering, however, the
source for group g contains both even- and odd-parity components:

s'q)=ovz, f dy,(Q) + f 400} (QQ) (@) (2.105)

and
S(Q)= f 400, (0T 4(Q) (2.106)

To eliminate the odd-parity flux from the group source terms we express the even-
and odd- parity components of the group-to-group scattering cross section in terms of the
like-parity spherical harmonicsgt and g-:

Ogy( Q') = O Qom(Q) - g'<g (2.107)

After afair amount of algebraic manipulation the x flux components within the nodes can

+

be diminated, and we obtain for S

gim
Saim =K1 OmaXgV Zfg (gio + c;g,m Lgim (2.108)
and
- = 1 .- - mm
Sgim =(Og Ogm)  OggmSgim = Tii " Cgint - (2.100)

The even-parity group source moments depend only on the corresponding flux moments,
{gim, in the higher energy groups, g'<g, and on {gio, the scalar flux moments. The odd-
parity source moments, however, are a function of the Sy, for g'<g as well as of the
{gim. Thusin multigroup calculations the Sélim, as well as the {gim must be stored for
each energy group, and the odd-parity source are computed recursively from the sourcesin
the higher energy groups. In the case of upscattering, the g>g terms are taken from the
previous iteration.
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II. E Evaluation of Nodal Integrals

In three dimensional geometry for a fourth order approximation the vector f has 35
elements, and for a quadratic approximation h, has 6 elements. For a full Ps
approximation the nodal and interface angular trial function vectors each consist of 15
elements. The A matrix is a 275,625 (35x35x15x15) element array. For hexagonal-Z
geometry, with 8 interfaces per node, the M matrix contains 378,000 (8x35x15x15)
elements. Taking full advantage of symmetries of the coefficient submatrices, and of the
orthogonality properties of the trial functions still leaves one with a staggering number of
integralsto evaluate.

Performing these integrals by hand represents an intractable task. This problemis
overcome through the use of a symbolic manipulation program to automate the evaluation
of the cross-section independent integrals involved in generating the coefficients. To
accomplish this we must break the matrices into volume and angular cross-section
independent integrals which may be evaluated separately. The constituent parts are shown
in Tablel in dimensionless form.

The individual submatrices consist of known functions of space and angle which
may be explicitly integrated. The symbolic manipulation code MATHEMATICA14is used
to evaluate the integrals. The implementation of these integrals within the symbolic
manipulation code is fairly straight forward. Initialy, the functional definitions of
Legendre polynomials and spherical harmonics are defined within the program. These
functions are then used to build up the vectors of trial functions. A simple nested do loop
structure then accesses the appropriate vector elements and constructs the integrand
corresponding to a particular submatrix element. The integration is then carried out over
the explicitly defined domain, and the result is stored as an element in an array
corresponding to a given submatrix. The array iswritten to an ASCII filewhichinturnis
read by aFORTRAN program which generates a FORTRAN DATA statement containing
the integrated values. The integration processis thus totally automated, and it isrelatively
simple, in principle, to generate the coefficient matrices for any desired set of trial functions
using Legendre polynomials, for other sets of orthogonal polynomials.

In Appendix A we show the MATHEMATICA scripts used to generate the

orthogonal polynomials as well as the submatrices needed to cal cul ate the response matrix
coefficients and the flux reconstruction arrays. A three-dimensional Cartesian node is
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shown in Figure 1. Thelocal noda coordinate system appearsin Figure 2. For hexagonal
geometry, Figure 3 shows the orientation of the positive directions aong the sides.

Tablel

Integral Arrays of Spatial and Angular Basis Functions

P = J( dv 0,50 HG™ = j( dQ Q,Q9r9n
U!i’ = ( dv fi'D|fi Vlmm = J‘ dQQ|g;~|g|_»n'
Dyy= [ dr i, Erey = | 00 Q1K
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Figure 1

Three-Dimensional Cartesian Node
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Figure 3

Owientation of the Positive Directions Along the Sides for Hexagonal Geomery
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I11. SOLUTION ALGORITHMS

In this Chapter we present those solution algorithms which are unique to the
solution of the response matrix equations contained in VARIANT. Inenergy, VARIANT
isaconventional multigroup code, utilizing algorithms already existing in the DIF3D shell
of whichitisapart. The energy-group equations are solved by fission source iteration in
conjunction with a coarse mesh rebalance acceleration scheme. These iterations, referred to
as outer iterations, are described in the DIF3D manual® and in standard texts. To perform
such fission source iterations in multigroup problems, it is necessary to be able to solve for
the flux moments within a group, given the group source. In VARIANT we use a red-
black within-group response matrix algorithm to solve for the partial currents and then
reconstruct the flux moments. In Hexagona geometry the two-color red-black scheme
must be replaced by afour color agorithm, but otherwise the logic isthe same. In sections
11 A. we set forth the basic red-black response matrix algorithm, but for brevity the
derivation of the four color algorithm is omitted. Theinner iterations are accelerated by a
partitioned matrix scheme similar to a synthetic diffusion acceleration method.6 We
examine the matrix partition in Section I11 B. In Sections 111 C and I11 D respectively the
implementation of the inner and outer iterations are presented.

I11.A Red-Black Response Matrix Algorithm

The response matrix equations derived in Chapter 2 are represented in alocal coordinate
system centered about the node. Before we can describe the iterative solution algorithm
quantitatively we must express the coupled set of response matrix equations for al of the
nodes in the problem domain in terms of the local equations. We consider here the case of
two-dimensional X-Y geometry, before discussing the complication of hexagonal and
three-dimensional configurations.

To begin, we first divide the problem into ared-black checkerboard domain. We
may then add subscriptsto Eq. 2.47 or 2.101 to indicate the k th red node

j:-K:RrKj;'tK-'-qu K:]" 2’3":|:I:kl’ (31)

where in the case of anisotropic scattering both even- and odd-parity group sources are
contained in q,, . Suppose we now define the partial current and source vectors for the red

nodes
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in a4

rl

Ir2 U1
ir=in a,=| A3 (3.2

j;’l—Kr 7quI’7

and the corresponding block-diagonal global response matrix as

0 Ry 0
R, = 2 . (3.3)
0 0 Rg

We may then write the global equations for the red nodes:

it =R/jr+q, . (3.4)

The equivaent equations for the black nodes are obtained smply by replacing r subscripts
with b in the foregoing procedure. The combined set of equations for red and black nodes
may thus be written as

Jr

Jb

i
jb

R, 0
0 R,

dr
Ub

+ (3.5)

We may now complete the global notation by noting that each component of the
incoming partia current to ared cell isidentical to an outgoing partial current component
from the adjoining black cell. This may be expressed in terms of a global connectivity
matrix I, as

7 =Miplp (3.6)
for thered cellsand

Jo=Myiy (3.7)
for the black. Note that the connectivity matrices will have at most one non-zero entry per

line and these will be equal to one at internal interfaces. Moreover, M} =1,
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Equations 3.5 through 3.7 may now be used to obtain a single global response
matrix equation

| R Ir :lﬂ, (3.8)
Ry | Jb db
where we have defined
Ry, =R, (3.9
and
Rpr =Ry, (3.10)

which unlike Ry and Rp are no longer block diagonal. For brevity we have also deleted the

+ superscript from j, and jp since corresponding incoming partial currents have been
eliminated.

The standard red-black iteration may be written as amatrix splitting in which Rpy
ismoved to the right side of the equation:

.+l |
L0 O Rl \Jr| | (3.11)
Ry 1 || 0 O (|Jb dp
which reducesto the final two-step iteration process
j|r+1:Rrbj|b+Qr
it =Rorjrt +ap, (3.12)

wherel istheiteration index.

[11. B The Partitioned Matrix Algorithm

Since the dimensions of transport response matrices are often large, the time per red-black
iterations can be quite long. For this reason a partitioned matrix algorithm has been
developed which substantially shortens the CPU time required to converge a within-group
calculation.6 The basic ideais to partition the response matrix between a diffusion-like
response matrix with only one term per interface and the larger number of higher-order
space-angle interface terms required to achieve accurate transport solutions. An iteration
consists of using the existing higher-order terms as a quasi-source to solve the diffusion-
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like response matrix equations. Then a single sweep is made through the nodes to update
the higher-order moments using the new quasi-diffusion solution. The saving in using
this partitioning are often quite large. In three-dimensional P3 calculations with bilinear
gpatial dependence at the interfaces, for example, there are eighteen terms per interface,
meaning that the dimension of the full response matrix is eighteen times that of the quasi-
diffusion calculation. In multigroup eigenvalue computations one such iteration per outer
iteration isusually sufficient. In fixed source problems alarger number is required.

The procedure used in deriving the partitioned matrix algorithm parallel to
considerable extent those utilized in Section I11. A. Wefirst partition Eq. 2.47 or 2.101 for
the K th red node to obtain an expanded form of Eq. 3.1:

ine || R R [|ime| |9
S+ | R R! 1- + l ! (3.13)
Jrk rk N [ [k Qrk

where ]ﬁf represents the flat, normal partial currents for a given red node, and ij

represents all other higher-order current moments for that node.

We next construct global vectors for the red nodes, analogous to Egs. 3.2

i i |
i it 2 o

i=lig | iF=|is| aP=|az|  di=| o (3.14)
jot I @ I

The equivalent partitioned vectors may be written for each black node by substituting b for
r. We may then write a partitioned matrix equation analogousto Eg. 3.5 as
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o Lore 0w |[i] [
.o+ 00 ol .ot 0
Ib Ror O Rpr O ||)p dp
L+ = 10 1 e * l (3'15)
Jr O Rp O Ry |(|ir ar
ib Ror 0 Rpr O [|jy | |

To convert from local to global numbering we must make a partition of the I, and IM,,

matrices. These may be written as j>*=N3j5", 7 =Myjy, jg =MN2j  and

iy =Ny, ;" . Using these expressions to eliminate the incoming currents from the right of
Eg. 3.8, we obtain

| RE 0 Ry ||ie| [a?
RE 1 RY O ||ig] | a8
r 10 r 1 ‘1 = I (3.16)
0 'Rrb l 'Rrb Iy dr
Ry 0 R I [|ib] |9
where analogoudly to Egs. 3.9 and 3.10 we have defined
RY =Rn’ a=o,1;p=0,1 (3.17)
and
R =RI¥NE . a=0,1;8=0,1 (3.18)

We are now prepared to perform a matrix splitting. We move three of the non-zero
submatricesin Eq. 3.16 to the right hand side as follows

I R® 0o o |[if| |0 o o RY|[iP]| |aP
RP 1 0 0 {0 0 RO ||i2| |af
r i ME br S @a9)
0 'Rrb I 0 Jr 0 0 0 Rrb Ir ar
Ry 0 Ry ||| O 0 0 0 ||ib| |9

Note that with the exception of the Ry}y submatrix the coefficient matrix on the left islower

triangular. This suggests that the iterative scheme created by adding the iteration index | to
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the partial currents on the right and | +1 to those on the left. 1f we separate the equations
into two subsets, the iterative procedure is seen more clearly:

ol Tl
L RE|IF)_ |ar],| O Ryl|ir (3.20)
R 1 ||ip do| |RY O ||ib
and
N+ A+l |
oo L e, o R 0 RY|[j!
) E L ol *lo ol . (3.21)
'Rbr I Ib Up Rbr 0 ||lb I

To solvefor thel + Literate of j; and jg we must invert the operator on the | eft of

the first equation. But this matrix has a much smaller dimension than that in the second
equation; its dimension is only equal to the number of node interfaces in the problem
domain. In fact the solution is quite analogous to solving the nodal diffusion equation with
only the flat components of the current at each interface. For smaller problems it may be
economical to invert EQ.3.20 directly. In VARIANT we employ red-black iterations on
Eg. 3.20 in the same manner described in I11.B.

-0 -0
Oncethel + literate of Jr and Jp is known, the lower triangular structure on the
left of the second equation, allows the | + 1 iterate of j, and j,, to be determined by a

single sweep through the red and then the black nodes. For simplified coding, the red-
black sweep of the second equation is replaced by afinal sweep utilizing the entire response
matrix. This modification may be shown to have no effect provided the quasi-diffusion
calculation is converged. If the quasi-diffusion solution is not completely converged, the

inclusion of j? and j}?, in the final red-black sweep smply gives adlight improvement in
the convergence.

[11. C. Inner Iterations

In coding the calculation of the response matrices R and B of Eq. 2.47, the
LINPACK and LAPACK subroutines related to matrix inversion and matrix multiplication
have been used in order to improve computing times

Equation 2.67 isthe basic equation solved by inner iteration once the sourcetermis
known. A guessed vector j~ isused to start the calculation. Boundary conditions are used
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to perform a complete sweep over the geometry and continuity conditions (outgoing partial
current through an interface set equal to the incoming partial current for the adjacent node)
are used to update the currents and perform inner iterations.

For boundary conditions the incoming partial currents on nodal surfaces which
form part of the outer boundary of the solution domain are computed in terms of the
outgoing partia current on the same surface:

I =Y]
wherethe albedoy isgiven by:
_1+2a
Y=1+2a
with “a” being the flux extrapolation constant. For the diffusion (P1) approximation we
have:
zero flux boundary condition: a=oo y =-1
zero incoming current boundary condition a=05 y =0
zero flux at extrapolated boundaries a=04692 vy =0.4692
zero net current (reflective boundary condition a=0 y =+1

Periodic boundary conditions are treated by using the computed outgoing current across a
boundary as an incoming current across the corresponding periodic boundary.

For the transport calculations, the void boundary condition is represented by Eq.

2.38. For the reflective and periodic boundary conditions, because of the spherical
harmonics expansion chosen, y is set equal to +1 or -1 according to the moment of the

partial current considered.

The total number of unknowns involved in acalculation is given by the number of
nodes multiplied by the number of sides of the nodes and by the total number of moments
of the partial current on each side. In hexagonal-Z geometry, afull P3 approximation, with

alinear approximation on each surface resultsin 144 unknowns (8x6x3) per node.

The unaccelerated inner iteration is performed by ordering the nodes and carrying
out ared-black (o, ordering) sweep of the spatia grid. In hexagonal geometry, consistent

with the existing algorithm of the DIF3D nodal option, a four color ordering has been
applied.
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The number of inner iterations Mg in group g for aplane is determined in a manner
similar to that of the nodal option of DIF3D. Define:

_13 =./o"
kg= &, Kah kg =1/ 05" Dg (3.22)

where 03” isthe removal (absorption + outscattering) cross section of the node n and Dg

is the diffusion coefficient.

The dimension “h” is taken equal to the lattice pitch in hexagona geometry and to
the square root of the areain x-y geometry. The quantity kg is simply the averaged value
of the node dimension measured in diffusion lengths. The convergence rate of the iterative
procedure increases with increasing kg since the spectral radius of the Gauss-Seidel
iteration matrix decreases with increasing node size. The decreased spectral radius of the
iteration matrix is due to the decreasing value of the transmission coefficient with increasing
node size, which in turn increases the diagonal dominance of the global coefficient matrix.
In view of this observation, plus numerical results for a number of test problems, the
following simple formulais used to determine the number of inner iterations in each group

g

/5, kg>1 \
Mg={10, 05<k<1

\15, ky<0.5 f

The strategy adopted for the three-dimensional solution of Eq. 2.47 is consistent
with the one used in the original DIF3D nodal option. Instead of considering the full
matrix, R is split into the plane components and the axial ones. Then the contributions
coming from the incoming axial partia currents are included in the source term. Theinner
(plane)iterations are performed in each plane to calculate the outgoing partial currents and
axia inner iterations (sweeps) are then performed with an odd-even ordering of the planes.
An algorithm, not present in the original code has been introduces to cal culate the number
of axial inner iterations Ma . |t issimilar to the planar algorithm, except that h in Eq. 3.22
isequal to the axial mesh size of the node, and the number of iterations is now selected to
be

Max:/Z’ kg> 0.5
9 \4, kg<0.5f
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In coding the algorithms, much care has been taken in order to insure a maximum use of
vectorization, especially in solving Egs. 3.20 and 3.21, which are fully and optimally
vectorized.

Several attempts have been made to take advantage of symmetry of the matrix and
the presence of a significant number of zero values in the response matrix due to the
orthogonality of the expansion functions. Unfortunately, the penalty associated with the
use of an indirect addressing and a partial loss of vectorization has discouraged such an
approach. Therefore, the full response matrices are presently used for the computation of
the partial currents.

[11. D Outer Iterations

Once the partial currents are calculated the average flux in the node may be
evaluated using Eq. 2.52. When the scalar flux moments are known , the Kgff calculation
can proceed as in a standard code, by the evaluation of the fission source. Than, a new
outer iteration can be performed with the evaluation of the inner iteration process of the
required quantities group by group ( currents, fluxes, scattering sources).

An attempt was made to accelerate the convergence of the outer iterations by
introducing the Chebychev polynomial method. The already existing machinery used by
the finite difference option of DIF3D was employed. Unfortunately, the acceleration
method turned out to be ineffective, and sometimes slowed convergence. No clear reasons
have been found to explain such a behavior. The Chebychev polynomial acceleration is
independent of the algorithm used to solve the fixed source problem related to a single outer
iteration, provided that the inner iterations are sufficiently converged. Nevertheless, it was
found that greatly increasing the number of full-matrix inner iterations has no positive
impact on the efficiency of the Chebychev method when applied to the variational nodal
method. Moreover, asimilar trend has been observed when this acceleration method has
been applied to the original DIF3D nodal option. A possible explanation isrelated to the
presence of flux moments, and therefore of fission source moments. In this situation, the
dominance ratio calculated to evaluate the acceleration parameters will not be representative
of the entire iterative matrix because only the first moment of the fission sourceisused in
its determination.

For thisreason it was decided to apply and adapt the algorithms already existing in
the DIF3D nodal option to accelerate the outer iterations. coarse mesh rebalancing and
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asymptotic source extrapolation. Full details of these methods are given in Ref. 15. We
only note that in calculating the leakage term of the coarse mesh rebalance equation we use
only the first moment of the partial currents because of the physical meaning of the
guantity. Slight differences are also caused by the fact that in our algorithm the partial
currents appear as integrated quantities over the node surface, whereas in the origina
DIF3D nodal option, the partial currents are averaged values. The efficiency of the coarse
mesh rebalance acceleration and the asymptotic source extrapolation methods has been
verified for use in conjunction with the variational nodal method by several numerical tests.
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IV. NUMERICAL CALCULATIONS

Several numerical calculations have been carried out in order to determine the
optimum order of spatial approximation for the flux, source and leakage dependence. Based
on these results, it was decided to adopt a fourth order expansion for the flux dependence
inside the node. A linear leakage spatial dependence has been adopted together with a
guadratic expansion for the source. When using simplified spherical harmonics, a flat
approximation on the leakage term is used. Because of error compensation, this
approximation was found to give better results. Of course, all these approximation have been

left parametrized in the code in such a way that the user can change them.

IV. A. Two Dimensional Results

In Table Il we show the results obtained from an x-y model of the EB&atitor
similar to the one defined in reference 24. The model has been modified in order to enhance

the transport effect (more than 3% AK/K). A nine group energy structure is used.

Table Il. EBR-Il x-y Geometry (enhanced transport effect)

Type of Calculation Keg CPU Time (sec) |

S, &) 0.99314 35

S @A) 0.99070 5.5

S (4) 1.01417 24.4

S (184) 1.01980 20.0
VARIANT P,(diffusion) 0.99084 0.9(0.3+0.6)
VARIANT P,, 1.02361 21(1.1+0.6)
VARIANT Simpl. P, 1.02409 1.2 (0.6 +0.6)
VARIANT P, 1.02207 6.8 (4.2 + 2.6)

Reference 1.02199 -

¥For VARIANT the breakdown of, respectively, response matrix coefficients and outer iteration CPU calculation
time is given in parenthesis.
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For this case we report also thg S results for different angular approximations and
different mesh sizes (the basic mesh gkidused in the nodal calculation, has been
successively refined by dividing the mesh size by twb Y4and four (18 )). The §
calculations have been carried out using the highly optimized TWODANT?**code . The
reference solutions have been obtained by extrapolation of the refined TWODANT finite

difference calculations.

The § calculations are very poor for the basic mesh grid where poth S, and S give
results comparable with the diffusion calculation (P solution of VARIANT). The R)(16
calculation, which is still not asccurate as the,P solution of VARIANT, requires a factor
3 more computation time. All calculations, as well as the ones presented in the following,
have been carried out on a RISC 6000/350 IBM workstation.

The B, (corresponding to the reduced angular approximation) and the simplified
spherical harmonic calculations provide comparable results. They overestimate the reference
solution by less than 0.2% &K/K, and, therefore, account for more than 90% of the total
transport effect. The simplified spherical harmonic approximation requires almost half the

time of the B, calculation.

We also observe that for the full P approximation most of the time is spent in the
coupling coefficient calculation. This time is 14 times larger than that required for the
corresponding P (diffusion) calculation. The reason is related to the different number of

floating point operation, which increases as the square of the response matrix dimension.

In Table 11l we show results for an EBR-II hexagonal 2D model. In this case the total
transport effect is of the order of 1.3®¥/K. The § calculations were carried out with the
TWOHEX? code, using 6 triangled) or 24 triangles (&) per subassembly. Recall that in

the case of the variational nodal method, only one node per subassembly is used.

Comparing computing times, we can note that the TWOHEXAS dalculation

requires 5 times more CPU time than the VARIAN;T P solution, which is in satisfactory

41



Table Ill. EBR-Il Hexagonal 2-D Geometry

Type of Calculation Kot CPU Time (sec) |

S, (A) 1.03240 89.5

S ) 1.03274 268.2

S, (4A) 1.03285 1053
VARIANT P,(diffusion) 101882 2.6 (0.4 +2.2)
VARIANT P, 1.03641 6.0 (3.7 +2.3)
VARIANT Simpl. P, 1.03396 1.8 (0.8 + 1.0)
VARIANT P, 1.03326 17.6 (9.0 + 8.6)

Reference 1.03289 -

#For VARIANT the breakdown of, respectively, response matrix coefficients and outer iteration CPU
calculation time is given in parenthesis.

agreement with the reference solution. Again a significant time is spent in computing the
response matrix coefficients. This is due to the presence of a large number (19) of nodes with
different compositions. The simplified spherical harmonic calculation gives a solution that is

clearly more accurate than thg P solution and requires more than a factor 3 less time.

We also point out that, in hexagonal geometry, VARIANT provides better results than
the nodal diffusion approximation of DIF3D for diffusion calculations when the solutions
from both methodologies are compared against a reference solution obtained by extrapolating
the finite difference results to a zero meshSize . This is related to the fact that the variational
nodal method employs a complete polynomial expansion to describe the flux intranodal spatial
dependence, whereas in the case of the DIF3D nodal option, cross terms are neglected. This
is not the case in Cartesian geometry where the two methods give almost identical results for
diffusion calculation when similar approximations are used for the flux, source and leakage

spatial dependence.
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IV. B. Three Dimensional Results

The Takeda benchmdfk model 2 has been used totest the performance of VARIANT
in three dimensional Cartesian geometry. This model is representative of a small FBR reactor
and employs a four group energy structure. Results are shown in Table IV. The reference
solution is provided by the ANL VIKI Monte Carlo code using the same multigroup cross
section set. Table IV also exhibits results (from reference 28) of S solutions calculated by
the THREEDANT cod® .

Table IV. Takeda Benchmark Model 2 x-y-z Geometry Small FBR

Type of Control Rod CPU Time
Calculation K Rod Out K 4Rod In Worth (sec)?
Monte Carlo VIM 0.97344+ 0.95988+ 0.1451+
0.00036 0.00038 0.00057 ~8 hrs
Threedant $ 0.97348 0.95931 0.1517 -
DIF3D Nodal
Transport Option 0.97138 0.95701 0.1546 11.7 (0.5 + 111.2)
VARIANT P, 0.96913 0.95430 0.1604 445 (0.3 + 442)
VARIANT Py, 0.97228 0.95814 0.1518 46.9 (1.6 + 45|3)
VARIANT
Simpl. B 0.97429 0.96028 0.1497 28.7 (0.6 +18.1)
VARIANT P, 0.97349 0.95942 0.1506 562 (25 + 53f)

#For VARIANT the breakdown of, respectively, response matrix coefficients and outer iteration CPU
calculation time is given in parenthesis.

The B VARIANT results are very similar to thg S calculations. Both solutions are
in very good agreement with the reference Monte Carlo calculation. Of course, the CPU time
required by VARIANT is more than one order of magnitude less than that needed by VIM.

The simplified spherical harmonic solution is again more accurate than,the P

solution and requires even less CPU time than the diffusion solution. For comparison, we

have also displayed the results obtained by the transport option of the DIF3D nodal
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calculation. Altough the time required is less than that for the simplified spherical harmonics,

we observe that the latter solution provides better results for hpth K and control rod worth.

Finally to test the code in 3D hexagonal geometry, we have considered the simplified

model of EBR-II provided in reference 24 (see figure 4). Results are provided in Table V.

Table V. EBR-Il Hexagonal-z Geometry

Type of Calculation Kot CPU Time (sec) |
Monte Carlo VIM 1.20423 £ 0.00045 ~ 4 days
VARIANT P, 1.17268 73 (2+71)
VARIANT P, 1.19523 213 (42 +171)
VARIANT Simpl. P, 1.20292 47 (5 + 42)
VARIANT P, 1.20349 1542 (308 + 1234)

#For VARIANT the breakdown of, respectively, response matrix coefficients and outer iteration CPU
calculation time is given in parenthesis.

The R variational nodal eigenvalue is within a few tenths of one percent of the VIM
Monte Carlo code result. We note that the VIM calculation required a few days of CPU time

against the 26 minutes required by VARIANT.

The simplified spherical harmonics calculation provides far superior results tg, the P
solution (96% of the total transport effect against 72%) with a CPU time that again is lower
than the diffusion calculation. This is mainly due to the lower number of outer iterations
required to converge. The number of unknowns are the same for the diffusion and the

simplified harmonic approximation (16 per node).

In Table VI the comparison for the hexagonal row axially integrated power obtained
is shown. As we can see, the discrepancy between the P and the VIM values does not exceed
0.5%. The diffusion solution has discrepancies of the order of 5% in the reflector and blanket
regions, whereas the maximum error for the simplified spherical harmonic calculation is of the

order of 1% and occurs in the first ring of the reflector region.
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Figure 4
EBR-I1 Representation for a Three Dimensional Criticality Problem
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Table VI. EBR-Il Ring Axially Integrated Power (MWth)

Ring VIM VARIANT P 2 |VARIANT Simpl.P .2 | VARIANTP 2 |
1 3.440 3.395 (-1.31) 3.425 (-0.44) 3.441 (0.03)
2 3.385 3.343 (-1.25) 3.373 (-0.35) 3.387 (0.06)
3 6.500 6.431 (-1.06) 6.486 (-0.22) 6.508 (0.12)
4 9.084 9.027 (-0.63) 9.098 (0.15) 9.117 (0.36)
5 10.975 10.938 (-0.34) 11.009 (0.31) 11.010 (0.32)
6 12.089 12.065 (-0.20) 12.089 (0.00) 12.067 (-0.78
7 12.457 12.606 (1.20) 12.432 (-0.20) 12.400 (-0.46
8 | 14435x16 | 15.166x 20 (5.06) 14.587 x10 (1.05)  14.492% 10 (-
9 1465x16 | 1540x 10 (5.17) 14.763x210 (0.76) 14.676% 10 (
10 | 13.112x 186 | 13.816x 20 (5.3]) 13.222x210 (0.44) 13.143% 10 (
11 | 95.30x 16 | 10.058x 0 (5.53) 96.098 x310 (0.83) 95.595% 10 (
12 | 64.846x 186 | 68.179x 20 (5.14) 65.316 x210 (0.12)  65.158% 10 (|
13 | 37.505x 18 | 39.165x 20 (4.48) 37.627 x210 (0.43)  37.614% 10 (
14 | 21.972x 16 | 22.829x 20 (3.90) 21.960 x210 (-0.05) 21.984% 10 (

39)
17)
.24)
).30)
.48)
.29)
.05)

aDiscrepancy (in percent) with respect to the reference VIM value is given in parenthesis.
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V. USER INFORMATION

VARIANT can be executed as an option in a standard DIF3D calculation. This
section highlights information of particular interest to users of the variational nodal option and
supplements the documentation provided in references 1 and 15 and the description of the
BCD input files.

V. A. Data Management

In order to minimize differences with the original coding of DIF3D, data management
has been kept with the same strategy of two large blocks of work space (fast and extended
core memory) even as two-level computers are becoming obsolete. The philosophy of
containment stays the same: extended core memory contains arrays which can be stored on

external data files.

Because a large memory size is required to store nodal coupling coefficients, a special
strategy has been introduced for their management. First, all the matrices involved in the
response matrix equation and in the flux and source evaluations are mapped for unigue non-
zero values. This mapping is done before the total memory requirement is evaluated and
demands a sizable quantity of memory (of the order of the one normally required in the fast

core memory array).

If the memory allocated by the user for the extended core array is sufficient, matrices
are used as they are; otherwise they are compressed and only unique elements are stored
along with their location in the original matrices. Of course, with the compressed matrices
computation time during outer iterations is penalized because of the use of indirect

addressing.

Due to the methodology of modeling anisotropic scattering in VARIANT, a new

COMPXS file structure has been implemented. The modification has been made in order to
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preserve compatibility with already existing codes that use COMPXS files. The description

of the new file structure is presented in Appendix B.

To enhance the performance on vector machines a new ordering of the partial current
moments has been adopted. This is reflected in the new specification of the NHFLUX file
structure shown in Appendix C. Contrary to the COMPXS file, the NHFLUX generated by
VARIANT will be incompatible with existing codes that use partial currents with moments

greater than first.

Recall that in order to reduce storage and computation time, the flux in VARIANT
is evaluated, using Eq. 2.52 -- only up to the number of moments of the source expansion.
This is done because only these moments of the flux are needed to compute the new outer
iteration source distribution. Therefore, only these moments are stored on the NHFLUX file.
In the case of the anisotropic calculation, the even-parity angular flux moments are also
evaluated and stored on NHFLUX, because they are needed in the anisotropic source

computation.

A post processor program, that reads the flux moments from the NHFLUX file,
reconstructs the flux locally at designated points of specified subassemblies and computes the
related reaction rates,ililoe soon made available.

V. B. Variational Nodal Parameters

A new card 12 of the BCD input file A.DIF3D (see Appendix D) has been introduced
to specify the nodal variational parameters. Some comments on their meaning and use follow.

V. B.1 Nodal Spatial Approximation

Default values for within the node flux spatial approximations are fourth order in
Cartesian geometry and sixth order in hexagonal geometry. Linear dependence of the leakage
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on the surface of the node is also recommended. These Jahieste rank deficiency from
the nodal coupling coefficient matric&s.

Figure 5 shows the required internal order for a given surface approximation in order
to insure rank sufficiency. For a linear approximation of the spatial leakage slope, a third
order intra nodal flux expansion is needed for Cartesian geometry, and a sixth order expansion
is needed for hexagonal geometry. For a very tight convergence criteria {6.9.,, rank
deficiency will result in a lack of convergence. For relaxed convergence criteria~ (€Xg),
third order for Cartesian and fourth order for hexagonal geometry can be safely used in
connection with linear approximation on the leakage term. For three-dimensional hexagonal
geometries, the axial expansion is kept to fourth order in order to minimize the size of the

response matrices while insuring rank sufficiency.

The order of the default source expansion polynomial is taken equal to one greater
than the surface approximation. It has been found that in some cases (especially for thermal
reactor configurations) an order equal to that used for the intra-nodal flagassary to

insure good power distribution results.

V. B.2 Angular Approximations

Specification of the P approximation for both flux and leakage will provide diffusion
results. Using P for the flux arld,  for the leakage will trigger the use of the reduced
angular approximation. With a negative value for the angular approximation variable input,
the code will use the corresponding simplified spherical harmoniescauBe of error
compensation, the best results in this case are most often obtained with a flat (0)
approximation for the spatial dependence of the leakage on the surface of the node. The flux

angular expansion cannot be lower than the anisotropic order NPNO specified later.
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Internal Expansion

Hexagonal
Surface Expansion
0(6) 1(12)2(18)

X-Y 1(3)
Surface Expansion

0(4) 1(8) 2(12) c 2(6)

Q9
1(3) 3 3 § 3(10)
2(6) 5 6 T 4(15)

g
3(10) 10 = 5(21)
4(15) 8 12 6(28)

n(m) = expansion order (number of terms)

= dimension deficient rank

- = projection deficient rank

= sufficient rank

Figure 5

M Matrix for Two-Dimensional Geometries
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V. B.3 Asymptotic Extrapolation Sentinel

A new option, (asymptotic extrapolation) has been introduced. This option is invoked
by setting the sentinel to -1. In this case only the fission sources are accelerated and no extra
space is needed to store previous outer iteration partial currents. No significant penalty has

been observed in the performance of the acceleration using this option.

V. B.4 Anisotropic Scattering Order (NPNO) and Extended Transport
Approximation (NXTR)

No anisotropic order greater than either MAXORD (scattering order of cross sections

on the COMPXS file) or the flux angular expansion is allowed.

An option (NEXTR parameter) to invoke the use of the total cross section, transport

cross section, or extended transport approximation is described below.

NEXTR set to a negative value is intended solely to perform comparison calculation
and should not be used for any other purpose. This setting forces the use of the zero moment
of the total cross section for isotropic calculations, and the use of the transport cross section

for anisotropic calculations.

The default value of 0 is strongly recommended for NEXTR. With this value the
transport cross section is used for isotropic calculation. For the anisotropic calculations the
total cross section is used unless the value of NPNO is lower than MAXORD. In this case
the BHS approximatioh is applied (the extended transport approximation corrects the total

cross section by taking into account the NPNO+1 order of the anisotropic scattering).

If NEXTR is specified to set at a value N greater than NPNO, an extended transport
approximation is applied from NPNO+1 to NXTR. Be aware that if NXTR is greater than
NPNO+1, this correction is done at the risk of the user; there is no proof that such correction

will give reasonable results.
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With these premises, having a pair of identical values for NPNO and NXTR
(00,11,22,33, etc.) will be strictly equivalent to having: 00,10,20,30, etc.

V. B.5 Nodal Coupling Coefficient Packing Option

The default value (0) results in no packing of the nodal coupling matrices unless the
array length provided by the user for the extended core memory is not sufficient. The user
can force the packing by providing a value of 1 for this option. This sometimes can be useful
when it will allow the problem to run with all the group constants (cross sections, fluxes,
currents) in core, thus reducing the input/output operations and therefore compensating for
the increase in CPU time resulting from the use of indirect addressing to unpack the matrices
during the iterations calculations. Workstations with poor input/output performances seem

to benefit most from this strategy.

V. B.6 Radial Inner Iteration Algorithm

The default value (0) implies the use of the partitioned algorithm. For an outer
iteration,n inneriteration are first performed on the first moment of the partial currents, the
higher moments contributions are included in the source term. This is followed by a full
sweep on all the moments. Sometimes, the full sweep matrix algorithm is necessary to avoid
convergence problems. This is performed by applying the partitioned algorithnm ¢yoles

wheren is the total number of inner iterations.

When the maximum number of outer iterations or convergence is reached, proper
convergence of the inner iterations is checked. The last outer iteration is performed using the
full sweep matrix algorithm. The inner iteration convergence criteria is identical to the
pointwise fission source specified in convergence criteria card 5. Only the first moment of

the partial currents is checked.
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V. C. Limitations

Enough memory must be allocated to contain all the information for at least one
energy group. Flux and source expansions up to sixth order are allowed in hexagonal
geometry, fourth order in Cartesian geometry. Partial current expansion up to second order
are allowed. Angular and scattering expansion of up;to P are allowed. For highly
heterogeneous reactor configurations involving thousands of different node types, calculation
and storage of response matrices represents the primary computational cost. In problems of
this type, it is highly desirable to store as many response matrices as possible in fast memory.

V. D. Programming Information

The programming structure of the nodal option of DIF3D has been retained for the
VARIANT option. Many of the existing subroutines have been modified, keeping essentially
the same functionality, and added with a new name where a V replaces an N. The list of
modified subroutines can be found in Table VII. Table VIII lists the names of the new
subroutines that were not part of the original version of DIF3D. The call tree for the main
branches of the VARIANT option is shown in Fig. 6, keeping in mind that, referring to Fig.
7.1 of Ref. 15, VHINIT, VHSST and VSINIT have replaced NHINIT, NHSST and XSINIT.
Subroutines starting with D belong to the LAPACK and LINPACK mathematical package.
A new common block /VARIAN/, which contains parameters specific to the nodal variational
option, has been added. Finally in Table IX we show the list of the original DIF3D
subroutines that have been modified, without changing their name, in order to accommodate
the new VARIANT option and the new COMPXS file structure with anisotropic scattering
capability.
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Table VII.

List of Modified Original DIF3D Subroutines,
With Name Changes where a V Replaces an N

RVHFLX VHCCPT VLXZ VSERRN
VALINT VHCMPT VMBKRG VSGET1
VBLADD VHCORE VMFSYM VSGET?2
VCCEL VHDISK VMINIT VSINIT
VCCL3D VHEDDM VMJIBDJ VSTOU1
VCHEX VHGEOM VMMTRX VSTOUZ2
VCHEXB VHINED VNHCCC VSUPDT
VCMPXS VHINIT VNHFIN VUTR1
VCZ VHINNR VNHOUT VUTR2
VCZB VHOEDO VNHSTT VUTRS3
VDSCTM VHPEAK VONVCK VUTR4
VEXBAL VHPKED VRCFIS VUTR5
VEXREA VHPNT VRCHEX VXINIT
VFSINI VHSHAP VRCSCT VXSHAP
VFXREA VHSST VRCZ1 VXYzCC
VHCC2D VHXSEC VSCREV WVHFLX
VHCC3D VLXHEX VSEDIT
Table VIII. List of the New Subroutines that Were Not
Part of the Original Version of DIF3D
CONCKI MACXY SRCSCP VCOH3D
HALCOP MACXYZ TVACBC VCOXY
MACH2D NPKCC UNIEL VCOXYZ
MACH3D PCXY VCOH2D ZERMAP

Table IX. List of Modified Original DIF3D Subroutines Without Name Changes

BCDINP EDITCR SSTATE ovL2
BININP LINKR1 COPIER OVL3
DIF3D LINKR2 DOMODS OVL5
DSST01 NHSIGA FARSET SVSCAT
DSSTO02 PDIF3D HMG4C UPDATE
DSSTO3 RADF3D ISOR58 WREC1
DXSREV SSINIT MAXBND WREC4




Figure 6. Call Tree for the Main Branches of the VARIANT Option

VHINIT CLOSCF
DEFICF
HEXMAP
ICRED
ICRIT
NHZMAP
OPENCF
PURGCF
PURGE
PUTM
VHCCPT ICRED
VHCMPT
VHCORE DEFICF
DELECF
EDITCR LINES2
ERROR
INTSET
LINES
PURGCF
PURGE
. WIPOUT
VHDISK DEFIDF
DOPC
. ERROR
VHGEOM GETIJ
NPKCC ERROR
LINES
MACH2D DCOPY
DGEMM
DGETF2
DGETRI
DPOTF2
DPOTRI
DSCAL
DSYMM
. HALCOP
MACH3D DGEMM
DGETF2
DGETRI
DPOTF2
DPOTRI
DSCAL
DSYMM
. HALCOP
MACXY DCOPY
DGEMM
DGETF2
DGETRI
DPOTF2
DPOTRI
DSCAL
DSYMM
. HALCOP
MACXYZ DCOPY
DGEMM
DGETF2
DGETRI
DPOTF2
DPOTRI
DSCAL
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Figure 6. Call Tree for the Main Branches of the VARIANT Option (Cont'd.)

DSYMM
. HALCOP
PUTM
UNIEL
VCOH2D
VCOH3D
VCOXY
VCOXYZ
. . ZERMAP
VHINED LINES
VHPNT INTSET
. PUTM
WIPOUT
VHSST CLOSCF
CLOSDF
ERROR
FLTSET
LINES
NHOEDO
OPENCF
OPENDF
PURGCF
PURGE
PUTM
VNHCCC BLKGET
BLKPUT
FINGET
FINPUT
ICRED
ICRIT
NODVOL
PCRED
PCRIT
VHCC2D FILGAM
GETBND
. MACH2D ...efc...
VHCC3D FILGAM
GETBND
. MACH3D ...efc...
VHINNR
VHXSEC FLTSET
VXYCC FILGAM
GETBND
. MACXY ...etc...
VXYZCC FILGAM
GETBND
. . MACXYZ ...etc...
VNHFIN BLKGET
BLKPUT
FINGET
FINPUT
FLTSET
ICRED
NODVOL
OPENCF
OPENDF
PCRED
PCRIT
PURGE
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Figure 6. Call Tree for the Main Branches of the VARIANT Option (Cont'd.)

VNHOUT

VHEDDM

VHFSYM
VHXSEC
VXSHAP
WDIF3D
WIPOUT
XREAD
BLKGET
BLKPUT
FINGET
FINPUT
FLTSET
OPENCF
VHOEDT

VUTR1

VUTR2

VUTR3

VUTR4

VUTR5

CLOSCF
CPYFIL
DEFICF
OPENCF
PURGCF
TVACBC
...etc...

VHOEDO

ICRED
PCRED
PCRIT
VCCEL

VCCL3D

BLKGET
FINGET
FLTSET
ICRED
PCRED
PCRIT
SRCSCP
VRCFIS
VRCSCT
ICRED
PCRED
PCRIT
PCXY
VCHEX

VCZ
VCHEX

VCZ
VRCHEX
VRCZ1
FLTSET
ICRED
PCRED
PCRIT
VLXHEX
VLXZ
VMMTRX

VSUPDT
CMSOLV
ICRED
PCRED
PCRIT
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ERROR
LINEX

FEQUAT
VCHEXB
FEQUAT
VCZB

CONCKI
DCOPY
PCOPY
VCHEXB
VCZB
DCOPY
PCOPY
VCHEXB

VM BKRG
VMFESYM
VMJIBDY

TVACBC

TVACBC

...etc...
..etc...

..etc...

..etc...

..etc...

TVACBC



Figure 6. Call Tree for the Main Branches of the VARIANT Option (Cont'd.)

TIMER
VONVCK TIMER
. . VSERRN
VNHSTT BLKGET
. BLKPUT
CLOSCF
FINGET
FINPUT
FLTSET
ICRED
OPENCF
PCRED
PCRIT
SEEK
VEXREA ERROR
FLTSET
LINES
PCRED
PCRIT
REED
. SEEK
VFSINI
VFXREA ERROR
. INTSET
LINES
PCRED
PCRIT
. REED
VMINIT FLTSET
. VXINIT FLTSET
WIPOUT
VSINIT CLOSCF
. ERROR
LINES
OPENCF
PNTGET
PURGCF
PURGE
PUTM
SEEK
VSGET1 BLKPUT
. CLOSDF
ERROR
FEQUAT
FINPUT
FLTSET
IEQUAT
LINES
OPENDF
REED
RITE
VSEDIT CHRFLT
. . LINES
VSGET2 BLKPUT
. CLOSDF
FINPUT
OPENDF
. REED
WIPOUT
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APPENDIX A

Mathematical Scripts Used to Generate the Orthogonal Polynomials and the
Submatrices needed to Calculate the Response Matrix Coefficients
and the Flux Reconstruction Arrays
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ANGULAR TRIAL FUNCTIONS
(X, y, z are direction cosines)

FILE: even_parity.functions.2d

(* Even Parity spherical harmonics, through P4 terms: *)
E: Y[0,0], Y[2,2], Y[2,1], Y[2,0], Y[4,4], Y[4,3], Y[:1),2], Y[4,1], Y[4,0] *)

(x *hkkkkkkkhkkkkkkkkkk kkkkkkkkkkkhkkkkhkkkkhkkkkkhkkkkkkkhkkkkhkkkk x)

g= 1{
1/2 Sqrt[15] (y"2 - z2),
-Sgrt[15] xv,
-1/2 Sart[5] (1-3x72),
3/8 Sqrt[35] (y"M4 - 6 y*2 z°2 + z/\4),
-3/2 Sqrt[35/2] x y (y"2 - 3 z7'2),
-3/4 Sqrt[5] (y*2-272)(1-7x"2),
3/2 Sqrt[5/2] xy (3-7x"2),
3/8 (3-30x"2+35x7M),
}

FILE: odd_parity.functions.2d

(* Odd Parity spherical harmonics, through P5 terms with Y[n,n] deleted: *)
(* Y[1,0], Y[3,2], Y[3,1], Y[3,0], Y[5,4], Y[5,3], Y[5,2], Y[5,1], Y[5,0] ®
(* *)

(x *kkkkkkkkkkkkkkkkkhkk kkkkkkkkkkkhkkkkkhkkkkhkkkkhkkkhkkkkkhkkkkkhkkkk x)

k={

Sqart[3] X,
1/2 Sqgrt[105] x (y"2-2z"2),
1/2 Sqrt[21/2] y (1-5x"2),
1/2 Sart[7] x(5x*2-3),
-3/8 Sqrt[385] x (yM -6 yr2 zM2 + zM),
-1/8 Sqrt[385/2] y (9x*2-1)(y*2-32z"2),
1/4 Sqrt[1155] x (3 x"2-1)(yr2-2z"2),
-1/8 Sqrt[165] y (1-14x"2+21x™4),
1/8 Sqrt[11] x (63 x"M-70x"2+ 15),

}
FILE: even_parity.functions.3d

R S e s S T T s B e e S R s s e T e e T e e )
(* *
(* Even Parity spherical harmonics, through P4 terms: *)
(* Y[0,0], Y[2,2], Y[2,1], Y[2,0], Y[2,-1], Y[2,-2], Y[4,4],...., Y[4,-4] )
(* *)
g={

1

1/2 Sqrt[15] (y"2 - z°2),
-Sgrt[15] xvy,
-1/2 Sart[5] (1-3x72),
-Sgrt[15] x z,
-Sqrt[15] v z,
3/8 Sqrt[35] (y"M4 - 6 y*2 z2°2 + z/\4),
-3/2 Sqrt[35/2] x y (y"2 - 3 z72),
-3/4 Sart[5] (y*2-272)(1-7x"2),
3/2 Sqrt[5/2] xy (3-7x"2),
3/8 (3-30x"2+35x7M),
3/2 Sqrt[5/2] xz (3-7 x"2),
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3/2Sart[5] yz(1-7x"2),
3/2 Sqrt[35/2] x z (z"2 - 3y"2),
3/2 Sqrt[35] yz (z"2-y"2)

}

FILE: odd_parity.functions.3d

(* Odd Parity spherical harmonics, through P5 terms with Y[n,n] deleted: *)
(* Y[1,0], Y[3,2], ...... Y[3,-2], Y[5,4], Y[5,3],....., Y[5,-3], Y[5,-4] *)
(* *)

(x *hkkkkkkkhkkkkkkkkkk kkkkkkkkkkkhkkkkkhkkkkhkkkkhkkkkkkkhkkkkkkkkk x)

k={
Sart[3] X,

1/2 Sqgrt[105] x (y"2-2z"2),
1/2 Sqrt[21/2] y (1-5x"2),
1/2 Sart[7] x(5x*2-3),
1/2 Sqrt[21/2] z (1-5x"2),
- Sgrt[105] xvy z,
-3/8 Sqrt[385] x (yM -6 y"2 z"2 + zM),
-1/8 Sqrt[385/2] y (9x*2-1)(y*2-32z"2),
1/4 Sqrt[1155] x (3 x"2-1)(yr2-2z"2),
-1/8 Sqrt[165] y (1-14x"2+21x™M),
1/8 Sqrt[11] x (63 xM -70x"2 +15),
-1/8 Sqrt[165] z (1-14 x"2 + 21 xM4),
-1/2 Sqrt[1155] xyz (3 x"2-1),
-1/8 Sqrt[385/2] z (9x"2-1)(3y"2- z/"2),
-3/2 Sqrt[385] x(y"3z-yz"3)

}
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FILE: Angint.math used in several Mathematica scripts to
calculate the angular integrals. The following relations are used:
(1) Integrate[ Sin[x]*(m-1) Cos[x]*(n-1), X, {0, Pi}] =

(1+(-1)*(m-1) ) Beta(m/2,n/2) / 2
(2) Integrate[ Sin[x]*(m-1) Cos[x]\(n-1), X, {0, 2 Pi} ] =

( 1+(-1)Mm-1)+(-1)M(n-1)+(-1)(m-1)(-1)(n-1) ) Beta(m/2,n/2) | 2

The algorithm treats each integrand as a polynmial in sines and cosines
of theta and phi (where phi is the azimuthal angle). The exponents

are extracted, along with any leading coefficinets, and the values for
the integrals in phi and theta are calculated using (1) and (2).

The integral values are summed term by term to arrive at the value
of the integral of the entire integrand.

The variable "dummy is introduce to ensure the integrand has the proper
polynomial structure (i.e. the number of terms is never less than 2).
"dummy" is zeroed out prior to adding the term to the sum

*hkkkkkkhkkkk * *hkkkkkkk xxxxx)

nDig = 30
<</usr/local/math2.2/Packages/Algebra/Trigonometry.m;
Angint [f_]:= Module[
{terms, sumTerms, coeff, expl, exp2, exp3, exp4, cl, c2, c3, c4 },
integrand = N[ Expand[ TrigReduce[ PowerExpand][
Sin[th]/(4 Pi) f]1]], nDig ] + dummy;

(* Get the number of terms in the integrand *)
terms = Length[ integrand ];

(* Calculate the integral for each term in the polynomial *)
sumTerms = 0;
Do[

B e e e e S e S S s L e e s S T

Print[ "Part ",1,": ",N[ integrand[[I]] ] I;
(* Check to see if term is a contant *)
If

NumberQ[ integrand[[l]] 1,

(* Constant term *)
coeff = integrand[[l]];
expl =0;

exp2 =0;

exp3 =0;

exp4 =0,

(* function of theta and phi *)
If
Length[ integrand[[l]] ] > 1,

If
[NumberQ[ integrand[[l,1]] 1,

coeff = integrand][[l,1]],
coeff =1.0

coeff=1.0

(* Check for "dummy" structure term *)
If [ Exponent[ integrand[[l]],dummy ] > 0, coeff = 0.0 ];

(* Extract exponents of sines and cosines *)

expl = Exponent[ integrand][l]],Cos[th] ];
exp2 = Exponent| integrand[[l]],Sin[th] ];
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]

exp3 = Exponent[ integrand][l]],Cos[ph] ;
exp4 = Exponent[ integrand][[l]],Sin[ph] ]

B e e S s S s R s e

Print[ "Cos[th] power = ",expl];
Print[ "Sin[th] power = ",exp2 |;
Print[ "Cos[ph] power = ",exp3 ];
Print[ "Sin[ph] power = ",exp4 ];
Print[ "Coefficient =",coeff];

k% *kk *kk nxxxnxx)

cl (1 + (-1)*expl)/2;

c2 (1 + (-1)*exp3 + (-1)*exp3 (-1)"exp4 + (-1)"exp4d)/2;
c3 Beta[ (expl+1)/2,(exp2+1)/2 ];

c4 = Beta[ (exp3+1)/2,(exp4+1)/2 ];

* *kkkkkk

DEBUG
Print[ "c1, c2, ¢3, c4 = ",c1," ",c2,” ",c3," ", c4 ],
DEBUG
sumTerms = sumTerms + N[ coeff c1 c2 c3 ¢4, nDig ],
{l,terms}

sumTerms
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FILE: AngIntPos.math used in the vacuum boundary condition calculation.
Same as Anglint.math except that accounts for absolute value of
direction cosine in the integrand. The following relations are used:
(1) 2*Integrate[ Sin[x]*(m-1) Cos[x]"(n-1), X, {0, Pi/2} ] =

Beta(m/2,n/2)
(2) Integrate[ Sin[x]*(m-1) Cos[x]\(n-1), X, {0, 2 Pi} ] =

( 1+(-1)Mm-1)+(-1)M(n-1)+(-1)(m-1)(-1)(n-1) ) Beta(m/2,n/2) | 2

The algorithm treats each integrand as a polynmial in sines and cosines
of theta and phi (where phi is the azimuthal angle). The exponents

are extracted, along with any leading coefficinets, and the values for
the integrals in phi and theta are calculated using (1) and (2).

The integral values are summed term by term to arrive at the value
of the integral of the entire integrand.

The variable "dummy is introduce to ensure the integrand has the proper
polynomial structure (i.e. the number of terms is never less than 2).
"dummy" is zeroed out prior to adding the term to the sum

*

*kkkkk *hkkkkkhkkkkhkhkhkhkkhrhkhkhkhx xxxxx)

nDig = 30
<</usr/local/math2.2/Packages/Algebra/Trigonometry.m;
AngIntPos [ f_ ] := Module[

{terms, sumTerms, coeff, expl, exp2, exp3, exp4, cl, c2, c3, c4 },
integrand = N[ Expand[ TrigReduce[ PowerExpand][
Sin[th]/(4 Pi) f]1]], nDig ] + dummy;

(* Get the number of terms in the integrand *)
terms = Length[ integrand ];

(* Calculate the integral for each term in the polynomial *)
sumTerms = 0;
Do[

B s e S e s S s L e e s S S T

Print[ "Part ",I,": ",N[ integrand[[I]] 1 1;

*k*

(* Check to see if term is a contant *)
If
NumberQ[ integrand[[l]] 1,

(* Constant term *)
coeff = integrand[[l]];

expl =0;
exp2 =0;
exp3 =0;
exp4 =0,

(* function of theta and phi *)
If
Length[ integrand[[l]] ] > 1,

If
[NumberQ[ integrand[[l,1]] 1,

coeff = integrand[[l,1]],

coeff=1.0
]1

coeff=1.0
I;

(* Check for "dummy" structure term *)
If [ Exponent[ integrand[[l]],dummy ] > 0, coeff = 0.0 ];

(* Extract exponents of sines and cosines *)
expl = Exponent[ integrand][l]],Cos[th] ];
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]

exp2 = Exponent| integrand[[l]],Sin[th] ];
exp3 = Exponent[ integrand][[l]],Cos[ph] ;
exp4 = Exponent| integrand[[l]],Sin[ph] ]

B e e e S S S S *kkkkkkkkkkkkkk

Print[ "Cos[th] power = ",expl];
Print[ "Sin[th] power = ",exp2 |;

Print[ "Cos[ph] power = ",exp3 ];
Print[ "Sin[ph] power = ",exp4 ];

Print[ "Coefficient =",coeff];
*kkkkkkkk *k* * *k* * * *kk * * *k* x)
cl =1,
c2 =(1+(-1)"exp3 + (-1)"exp3 (-1)"exp4d + (-1)"exp4)/2;
c3 = Beta[ (expl+1)/2,(exp2+1)/2];
c4 = Beta[ (exp3+1)/2,(exp4+1)/2 ];
DEBUG

Print[ "c1, c2, ¢3, c4 =",c1," ",c2,” ",c3," ", c4 ],
DEBUG

sumTerms = sumTerms + N[ coeff c1 c2 c3 ¢4, nDig ],

{l,terms}

sumTerms
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(* A Mathematica script to generate the H matrix, which takes into account
the angular dependence of the node interior.
2d Geometry *)
ifa=9
rules = {x -> Coslth],y -> Sin[th]Cos[ph],z -> Sin[th]Sin[ph]}
<<even_parity.functions.2d
g=g/. rules
0={Cos][th],Sin[th]*Cos[ph]}
<<AngInt.math
h = Table[0,{i,2},{j,2}{k,ifa},{l,ifa}]
Dola=Anglnt[ of[il] of[jl] g[[kI] o[lll] I;
hilij.k,M]=a;
a=a, (*
h([i,}.I.k]]=a;
hili.i.k,[]]=a;
hili,i.|,k]]=a, *)
{i,2},{j,2}.{k,ifa}{l,ifa}]
(* Save["hxy.dat",h] *)
stmp = OpenWrite["hxy.rawdata”]
WriteString[stmp,"H \n"]
Do[Write[stmp,N[h[[i,j,k,1]],16]],{l.ifa}.{k,ifa},{j,2},{i,.2}]
Close[stmp]
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This MATHEMATICA script calculate the E matrix (angular coupling)
for 2-D X-Y geometry. The E matrix is defined as

E = Integrate[ g[i] k[j] Omegalj].n.{th,0,Pi},{ph,0,2 Pi}]
where g[i] are the even parity angular trial functions,
k[j] are the odd parity trial functions on a given face
n is the unit normal for the face
Omega.n is alway equalent to the "mu"” direction in surface coordinates

The angular trial function set defined in this script covers up to a
P5 expansion.

*kkkkkkkkkkkkkk B R s e s R e T e e T e e *kkkkkkkk )

ifa=9

<<AngInt.math

<<even_parity.functions.2d

<<odd_parity.functions.2d

k = Sqrt[3] x k

k1l =k/. {x->u,y->n,z->s}

k2 =k /. {x->n,y->u,z->s}

trigl = {x->Coslth],y->Sin[th]Cos[ph],z->Sin[th]Sin[ph]}

trig2 = {u->Cos[th],n->Sin[th]Cos[ph],s->Sin[th]Sin[ph]}

g =g / trigl

k1l =K1 /. trig2

k2 = k2 /. trig2

e = Table[0,{i,2},{j,ifa},{l,ifa}]

Do[
e[[L,i.il] = AngInt[g[TilIk2[[]];
el[2,i.i]] = Angintfg[Tillk2[iT]
{i,ifa},{j,ifa}

Save["exy.dat",e]

stmp = OpenWrite["exy.rawdata"
WriteString[stmp,"E \n"]
Do[Write[stmp,N[e[[i,j,[]],16]11,{,ifa},{j,ifa}{i,2}]
Close[stmp]
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This MATHEMATICA script calculate the E matrix (angular coupling)
for 3-D hexagonal geometry. The E matrix is defined as

E = Integrate[ g[i] k[j] Omegalj].n.{th,0,Pi},{ph,0,2 Pi}]
where g[i] are the even parity angular trial functions,
k[j] are the odd parity trial functions on a given face
n is the unit normal for the face
Omega.n is alway equalent to the "mu"” direction in surface coordinates

The angular trial function set defined in this script covers up to a
P5 expansion.

*%kk%k *k* * * * * *k* * * *kk *%kk%k *k* *%kk% * * *kk )
nAng = 15

<<AngInt.math

<<even_parity.functions.3d

<<odd_parity.functions.3d

99=g9g
Clear[g]

kx = Sqrt[3] x k
Clear[k]

(* Rotate odd parity functions into surface coordinates *)
cl=1/2

c2 = Sqrt[3]/2

gg=gg/. {X->u,y->v,z->w}

ki=kx/ {x->u,y->v,z->w}

k2=kx/. {x->clu+c2v, y->c2u-clv,z-> w}
k3=kx/. {x->-clu+c2v,y->c2u+clv,z->w}
kd =kx /. {x->w,y->u,z->v}

(* convert to direction cosines *)

trig = {u->Cos[th],v->Sin[th]Cos[ph],w->Sin[th]Sin[ph]}
gg =gg /. trig

k1 =Kk1/.trig

k2 =k2 /. trig

k3 =k3 /. trig

k4 = k4 /. trig

Clear[e]
e = Table[0,{i,4},{j,nAng},{k,nAng}]

Do
P[rint[ "Generating e[i,",j,",".k,"]" 1;
e[[1,j.k]] = AngInt[gg][j]] K1[[K]] ];
e[[2,j,k]] = AngInt[gg][j]] k2[[K]] ];
e[[3.j.k]] = AnglInt[gg][j]] k3[[K]] ];
e[[4.j.k]] = AngInt[gg][j]] k4[[K]] ],
{j,nAng}, {k,nAng}

]

(* Save E matrix, and generate raw data for data statement *)
(* Save['ehexz.dat",e] *)
stmp = OpenWrite["ehexz.rawdata”]
WriteString[stmp,"E \n"]
Do[
Write[ stmp, Chop[ N[ e[[i,j,k]], 12 ], 10*-14 1],
{k,nAng},{j,nAng}{i,4}

Close[stmp]
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(* A Mathematica script to generate the V matrix,
the angular dependence array needed in the anisotropic scattering
calculation. 2D Geometry *)

(* Define even parity angular trial functions *)

<<even_parity.functions.2d

g9=g9

Clear[g]

(* Define odd-parity scattering functions *)

gm = {Sqgrt[3]x,

Sart[3]y,
Sqrt[7/4](5x"3-3x),
Sqrt[21/8](5x"2-1)y,
Sqrt[105/4](y"2-z"2)x,
Sqrt[35/8](y"2-3z"2)y,

1/8 Sqart[11] x (63 xM -70x"2 +15),

-1/8 Sqrt[165] y (1-14x"2+21xM4),

1/4 Sqrt[1155] x(3x"2-1)(y"2-2z"2),

-1/8 Sqrt[385/2] y (9x"2-1)(y"2-32"2),

-3/8 Sqrt[385] x (y"M4 -6 y"2 z"2 + zMN4),

3/8 Sqrt[77/2] y (y*4 -10 y*2 z"2 + 5z M),

0={Cos][th],Sin[th]*Cos[ph]}

trig = {x->Cos[th],y->Sin[th]Cos[ph],z->Sin[th]Sin[ph]}
gg =gg/. trig
gm =gm/. trig

v = Table[0.{i,2},{j,9}.{k,12}]

(* Calculate integrands for the V matrix *)
<<AngInt.math
Do[
Print[ "Generating v[i,",j,"," k,"
V[[1.},K]] = AngInt[ o[[1]]gg[[]
V[[2,},k]] = Angint[ o[[2]]gg[[]
] . 9% ik 12}

—_——

(* Save V matrix, and generate raw data for data
statement *)

(* Save["vxy.dat",v] *)

stmp = OpenWrite["vxy.rawdata”]
WriteString[stmp,"V \n"]

Do[

Write[ stmp, Chop[ N[ v[[i,j,k]], 12 ], 10"-14 1],
{k,12}.{j,9}.{i.2}

Close[stmp]
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(* A Mathematica script to generate vacuum boundary conditions.
2D Geometry *)

rl = {x -> Coslth],y -> Sin[th]Cos[ph],z -> Sin[th]Sin[ph]}
r2 = {u -> Coslth],n -> Sin[th]Cos[ph],s -> Sin[th]Sin[ph]}

<<even_parity.functions.2d
gl=gl/.rl

<<AngIntPos.math

<<exy.dat;

el = Table[ e[[1,i,j]].{i,.9}.{j,9}];
| = Table[0,{},9}.{k,9]];

uu = Table[0,{j,9},{k,9]];
vac = Table[0,{},9},{k,9}];

i9 = IdentityMatrix[9];

Do[
I[[1,k]] = AngintPos[ Cos[th] g1[[il] g1[[K]] ],
11,9}k, 9}

uu = (Transpose[el].Inverse[l].e1)/2;

vac = Inverse[uu+i9].(uu-i9);

(* Save['vacxy.dat",el,l,uu,vac]

stmp = OpenWrite["vacxy.out”,FormatType->OutputForm]
Write[stmp, MatrixForm[N[vac,8]]]
Close[stmp] *)

stmp = OpenWrite["vacxy.rawdata"]
WriteString[stmp,"P \n"]
Do[Write[stmp,N[vac[i,j]],16]],{j,9}.{i,9}]
Close[stmp]
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(* A Mathematica script to generate the H matrix, which takes into account
the angular dependence of the node interior.
3d Geometry *)
rules = {x -> Coslth],y -> Sin[th]Cos[ph],z -> Sin[th]Sin[ph]}
<<even_parity.functions.3d
<<AngInt.math
g=g/. rules
0={Coslth],Sin[th]*Cos[ph],Sin[th] Sin[ph]}
h = Table[0,{i,3},{j,3},{k,15},{I,15}]
Do[
a=Ang|nt[ of[i]] of[il] 9[[kI] g[['1] I;
h(fi.}.k,[]]=a;
h([i,}.I.k]]=a;
hili.i.k,[]]=a;
hili,i.lk]]=a,
{i,34{5,i,3},{k,15},{l,k,15}]
(* Save["hxyz.dat",h] *)
stmp = OpenWrite["hxyz.rawdata"]
WriteString[stmp,"H \n"]
Do[Write[stmp,N[h[[i,j,k,I]],16]],{1,15}.{k,15},{j,3}.{i,3}]
Close[stmp]
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This MATHEMATICA script calculate the E matrix (angular coupling)
for 3-D X-Y-Z geometry. The E matrix is defined as

E = Integrate[ g[i] k[j] Omegalj].n.{th,0,Pi},{ph,0,2 Pi}]
where g[i] are the even parity angular trial functions,
k[j] are the odd parity trial functions on a given face
n is the unit normal for the face
Omega.n is alway equalent to the "mu"” direction in surface coordinates

The angular trial function set defined in this script covers up to a
P5 expansion.

*kkkkkkkkkkkkkk B R s e s R e T e e T e e *kkkkkkkk )

ifa=15

<<AngInt.math

<<even_parity.functions.3d

<<odd_parity.functions.3d

k = Sqrt[3] x k

k1l =k/. {x->u,y->n,z->s}

k2 =k /. {x->n,y->u,z->s}

k3 =k /. {x->s,y->u,z->n}

trigl = {x->Coslth],y->Sin[th]Cos[ph],z->Sin[th]Sin[ph]}

trig2 = {u->Cos[th],n->Sin[th]Cos[ph],s->Sin[th]Sin[ph]}

g =g / trigl

k1l =k1/. trig2

k2 = k2 /. trig2

k3 = k3 /. trig2

e = Table[0,{i,3},{j,ifa},{l,ifa}]

Do[
e[[L,i.l] = AngInt[g[TilIk2[[]];
e[[2,i.]1] = AngIntg[TilTk2[]];
el[3,i.]1] = Angintg[TilTk3[iIl,
{i,ifa},{j,ifa}

(* Save['exyz.dat",e] *)

stmp = OpenWrite["exyz.rawdata"]
WriteString[stmp,"E \n"]
Do[Write[stmp,N[e[[i,j,[]],16]11,{l,ifa},{j,ifa}{i,3}]
Close[stmp]
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This MATHEMATICA script calculate the E matrix (angular coupling)
for 3-D hexagonal geometry. The E matrix is defined as

E = Integrate[ g[i] k[j] Omegalj].n.{th,0,Pi},{ph,0,2 Pi}]
where g[i] are the even parity angular trial functions,
k[j] are the odd parity trial functions on a given face
n is the unit normal for the face
Omega.n is alway equalent to the "mu"” direction in surface coordinates

The angular trial function set defined in this script covers up to a
P5 expansion.

*%kk%k *k* * * * * *k* * * *kk *%kk%k *k* *%kk% * * *kk )
nAng = 15

<<AngInt.math

<<even_parity.functions.3d

<<odd_parity.functions.3d

99=g9g
Clear[g]

kx = Sqrt[3] x k
Clear[k]

(* Rotate odd parity functions into surface coordinates *)
cl=1/2

c2 = Sqrt[3]/2

gg=gg/. {X->u,y->v,z->w}

ki=kx/ {x->u,y->v,z->w}

k2=kx/. {x->clu+c2v, y->c2u-clv,z-> w}
k3=kx/. {x->-clu+c2v,y->c2u+clv,z->w}
kd =kx /. {x->w,y->u,z->v}

(* convert to direction cosines *)

trig = {u->Cos[th],v->Sin[th]Cos[ph],w->Sin[th]Sin[ph]}
gg =gg /. trig

k1 =Kk1/.trig

k2 =k2 /. trig

k3 =k3 /. trig

k4 = k4 /. trig

Clear[e]
e = Table[0,{i,4},{j,nAng},{k,nAng}]

Do
P[rint[ "Generating e[i,",j,",".k,"]" 1;
e[[1,j.k]] = AngInt[gg][j]] K1[[K]] ];
e[[2,j,k]] = AngInt[gg][j]] k2[[K]] ];
e[[3.j.k]] = AnglInt[gg][j]] k3[[K]] ];
e[[4.j.k]] = AngInt[gg][j]] k4[[K]] ],
{j,nAng}, {k,nAng}
|

(* Save E matrix, and generate raw data for data statement *)
(* Save['ehexz.dat",e] *)
stmp = OpenWrite["ehexz.rawdata”]
WriteString[stmp,"E \n"]
Do[
Write[ stmp, Chop[ N[ e[[i,j,k]], 12 ], 10*-14 1],
{k,nAng},{j,nAng}{i,4}

Close[stmp]
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(* A Mathematica script to generate the V matrix,
the angular dependence array needed in the anisotropic scattering
calculation. 3D Geometry *)

trig = {x -> Coslth],y -> Sin[th]Cos[ph],z -> Sin[th]Sin[ph]}

(* Define even parity angular trial functions *)

<<even_parity.functions.3d

gp=g9g

Clear[g]

gp =gp/. trig

(* Define odd-parity scattering functions *)
gm = {Sqgrt[3]x,

Sart[3]y,
Sqrt[3]z,
Sqrt[7/4](5x"3-3x),
Sqrt[21/8](5x"2-1)y,
Sqrt[21/8](5x"2-1)z,
Sqrt[105/4](y"2-z"2)X,
Sqrt[105]x*y*z,
Sqrt[35/8](y"2-3z"2)y,
Sqrt[35/8](3y*2-22)z,
1/8 Sqrt[11] x (63 xM -70x"2 +15),
-1/8 Sqrt[165] y (1 - 14 x"2 + 21 x™4),
-1/8 Sqrt[165] z (1 - 14 x"2 + 21 x™4),

1/4 Sqgrt[1155] x (3 x"2-1) (y"2-2z"2),
-1/2 Sqrt[1155] xyz (3 x"2-1),

-1/8 Sqrt[385/2] y (9 x"2-1) (y*2-32"2),
-1/8 Sqrt[385/2] z (9 x"2-1) (3y"2-2"2),

-3/8 Sqrt[385] x (yM -6 y"2z72 +zM4),
-3/2 Sqrt[385] x(y*3z-yz"3),

3/8 Sqrt[77/2] y (y*4 -10 y*2 z"2 + 5z M),

3/8 Sqrt[77/2] z (z*4 -10 y"2 z"*2 + 5 y™4),
}

gm =gm /. trig
0={Coslth],Sin[th]*Cos[ph],Sin[th]Sin[ph]}
<< Anglnt.math

v = Table[0,{j,3},{k,15},{,21}] _
Do[V[[j.k,lI=AngInt[o[[illgp[[K]]gmI[I]], {i.3}.{k,15}.{l,21}]

(* Save["vxyz.dat",v] *)

Put[V ,"vxyz.rawdata"]
Do[PutAppend[N[V[[j,k,I]],16],"vxyz.rawdata"],{l,21},{k,15}.{j,3}]
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(* A Mathematica script to generate vacuum boundary conditions.
3D Geometry *)

ifa=15

rl = {x -> Coslth],y -> Sin[th]Cos[ph],z -> Sin[th]Sin[ph]}

r2 = {u -> Coslth],n -> Sin[th]Cos[ph],s -> Sin[th]Sin[ph]}

<< even_parity.functions.3d

gl=gl/.rl

<<AngIntPos.math

<<exyz.dat;

el = Table[ e[[1,i,j1],{i,ifa},{j,ifa}];
| = Table[0,{j,ifa},{k,ifa}];

uu = Table[0,{j,ifa},{k,ifa}];
vacz = Table[0,{j,ifa},{k,ifa}];

i4 = ldentityMatrix][ifa];

Do[
I[[1,k]] = AngIntPos[ Cos[th] g1[[il] g1[[K]] ],
_{|,|fa},{k,|fa}

Print["Inverting matrix"];

uu = (Transpose[el].Inverse[l].el)/2 ;
vacz = Inverse[uu+i4].(uu-i4);

(* Save['vacxyz.dat",el,l,uu,vacz]

stmp = OpenWrite["vacxyz.out",FormatType->OutputForm]
Write[stmp, MatrixForm[N[vacz,8]]]
Close[stmp] *)

stmp = OpenWrite["vacxyz.rawdata”]
WriteString[stmp,"P \n"]
Do[Write[stmp,N[vacz[[i,j]],16]],{j,ifa},{i,ifa}]
Close[stmp]
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SPATIAL TRIAL FUNCTIONS

FILE: f.surf.xy.dat
Trial functions on a side of a X-Y node. Expansion order: 2

| = {1, 2*37(L/2)*X, -5"(L/2)/2 + 6¥5(1/2)*x"2}

FILE: f.vol.xy.dat
Trial functions on the interior of a X-Y node. Expansion order: 4

f={1, 237N (L/2)*x, 2*37N(L/2)*y, -5N(1/2)/2 + 6*57(LI2)*x 2, 12*X*y,
-BA(1/2)I2 + 6*5N(LI2)*yN2, ~3¥TA(LI2)*X + 20%7TA(1/2)*x"3,
-(15N(L12)*y) + 12¥15MN(L/2)*x 2%y, ~(157(1/2)*X) + 12*15A(1/2)*x*y"2,
3FTA(L/2)*y + 20%7TN(LI2)*y"3,

-21/8 + 210*x74 - (3*57N(1/2)*(-57(1/2)/2 + 6*57(1/2)*x"2))/2,
-6*21A(L/2)*x*y + 40%21N(1/2)*x 3%y,

-5/4 - (5N(1/2)*(-57(1/2)/2 + 6*57N(1/2)*x12))/2 + 180*x"2*y"2 -
(5N(L/2)*(-57(L12)/2 + 6*57(1/2)*y"2))/2,

-6*21A(LI2)*x*y + 40%21N(1/2)*x*y"3,

-21/8 + 210*yA4 - (3*BA(LI2)*(-5N(1/2)/2 + 6*57N(1/2)*y~2))/2}

FILE: f.surf.hex.dat
Trial functions on a side of a hex node. Expansion order: 2

| = {1, 3*27(L/2)*3N(LI4A)*X, -57(L/2)/12 + 9*157(1/2)*x 2}

FILE: f.vol.hex.dat
Trial functions on the interior of an hex node. Expansion order: 6

f={1., 3.531397147659254*x, 3.531397147659254*y,
-0.992094737665681 + 12.37218113922247*x"2, 15.2127765851133*x*y,
-1.386623516201175 + 4.220134183810281*x"2 + 13.07212295960745*y"2,
-7.364172208855169*x + 45.55400150508527*x"3,
-2.843918214276882*y + 52.77654471105122*x"2*y,
-6.215410878336123*x + 15.34253644105606*x"3 + 69.31604172534397*x*y"2,
-9.20730654962232*y + 30.49051331999612*x"2*y + 46.79193393431396*y"3,
1.144405667459047 - 40.06601247254548*x"2 + 168.2602416904509*x"4 -
1.406229436608328*y"2, -26.50296143625209*x*y + 193.4898333051816*x"3*y,
0.937907092856306 - 25.07947109327715*x"2 + 54.30072427626424*x"4 -
8.90944642896137*y"2 + 250.7950289971609*x"2*y"2,
-50.42654572628691*x*y + 130.7053493868987*x"3*y +
302.4959930449739*x*y"3, 1.539474445844345 - 8.59954682742715*x"2 +
5.127712221713981*x"4 - 47.18963566829999*y"2 +
173.7862848738076*x"2*y"2 + 163.2901353147327*y"4,
11.6653537350933*x - 194.1305451511002*x"3 + 623.0154297905012*X"5 -
5.717241004090825*x*y"2, 4.69185605425132*y - 157.7548620476962*x"2*y +
717.9223962484047*xM*y - 9.2171369165954*y"3,
9.69755937019898*x - 106.9840393103204*x"3 + 197.8190140565777*X"5 -
102.6298897072043*x*y"2 + 917.106990708609*x"3*y"2,
5.264241230760947*y - 205.4054425941534*x"2*y + 464.0234379739513*x"4*y -
27.72465200112097*y"3 + 1184.265472234982*x"2*y"3,
8.09990722997388*x - 32.69143643539429*x"3 + 9.06696611885408*x"5 -
309.2541675819772*x*y"2 + 851.414464715421*x"3*y"2 +
1255.463567163217*x*y"4, 15.68457470472548*%y - 111.28234482202*x"2*y +
132.8642324402051*x"4*y - 215.3509727206996*y"3 +
899.228572510356*x"2*y"3 + 561.3590955770824*y"5,
-1.060095787822545 + 83.019683621295*x"2 - 889.228572832441*x"4 +
2313.052962198468*x"6 - 1.293105354507158*y"2 -
11.53703521761299*x"2*y"2 + 9.39119022184615*y"4,
0.0000108358095451932*x*y*(4.335238300855329*10"6 - 7.246427*10"7*x"2 +

2.452554741140914*10"8*x"4 - 4.901970000000001*10"6*y"2),

-1.342920857770678 + 63.30661830660211*x"2 - 448.8548508855424*x"4 +
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720.0866810090347*x"6 + 21.19039857921666*y"2 -
682.8485950113241*x"2*y"2 + 3419.545944882732*x"4*y"2 -
41.92742357206419*y"*4, 66.87661377195044*x*y - 878.806782568358*x"3*y +
1698.779184200614*x"5*y - 388.6964335735138*x*y"3 +
4389.10418853506*x"3*y"3, -0.69529255111581 + 33.14469660668448*x"2 -
108.7042593792074*x"4 + 17.72340254766733*x"6 + 23.12292942763903*y"2 -
1326.755058402553*x"2*y"2 + 3138.811085482705*x"4*y"2 -
84.7848146373795*y"4 + 5426.412021403232*x"2*y"4,

100.3195658795806*x*y - 505.5173873502208*x"3*y +
447.2929180746544*x"5*y - 1647.523967451926*x*y"3 +
4884.832425884538*x"3*y"3 + 4986.581349244301*x*y"5,
-1.735740046497104 + 18.46246594573035*x"2 - 45.48807275055156*x"4 +
28.55381163561693*x"6 + 106.555405180707*y"2 - 891.974915726297*x"2*y"2 +
1307.292857878233*x"4*y"2 - 918.732525582574*y"4 +
4380.113505445939*x"2*y"4 + 1915.895220021416*y"6}

FILE: f.surfxy.xyz.dat
Trial functions on a surface of a X-Y-Z node. Expansion order: 2

f={1, 237N (L/2)*x, 2*37N(L/2)*y, -5N(1/2)/2 + 6*57(L/2)*x 2, 12*X*y,
-5A(1/2)/2 + 6*57N(1/2)*y 2}

FILE: f.vol.xyz.dat
Trial functions on the interior of a X-Y-Z node. Expansion order: 4

f={1, 237 (L/2)*x, 2*37N(L/2)*y, 2*37N(1/2)*Z, -57N(1/2)/2 + 6*57(1/2)*X2,
12%x*y, -5A(112)[2 + 6*5°(1/2)*y~2, 12%y*z, -5N(1/2)/2 + 6*57(L1/2)*2/2,
12*x*7, -3*TN(L12)*x + 20%77(112)*xA3, <(15~(1/2)*y) + 12*15A(1/2)*x 2%y,
J(ABN(LI2)*X) + 12¥157N(LI2)*x*y~2, -3¥7TN(112)*y + 20¥77(1/2)*y"3,
-(157(1/2)%2) + 12157 (1/2)*y~ 2%z, -(157°(1/2)*y) + 12*15A(112)*y*z72,
3¥TNL/2)*Z + 20%7TN(112)*27°3, -(15N(1/2)*X) + 12*157\(1/2)*x*2~2,
-(157(1/2)%z) + 12¥157N(1/2)*x 2%z, 24*37(1/2)*x*y*z,
-1/(80*(1/3600 - (-1/(32*5~(1/2)) + (3*57(1/12))/224)"2)7(1/2)) +
xM/(1/3600 - (-1/(32*57(1/2)) + (3*57(1/2))/224)~2)"(1/2) -
(é-l/(32*5’\(1/2)) + (3*5A(1/2))/224)*5-5A(1/2;/2 + 6*5N(1/2)*x12))/

1/3600 - (-1/(32*57(1/2)) + (3*5°(1/2))/224)2)N(1/2),

-6*21’\(1/2)*x*y + 40*217(1/2)*x 3%y,
-1/(144*(1/14400 - (1/(32*5(1/2)) - 5’\(1/2)/288)’\2)"81/2))
(él/(32*5"(1/2)() 57(1/2)/288)* ES"(l/Z)/Z + 6*57(1/2)*x"2))/

1/14400 - (1/(32*5°(1/2)) - 5 1/2)/288)’\2)"51/2 +
XA2*y"2)/(1/14400 - (1/(32*57(1/2)) - 5~(1/2)/288)"2)7(1/2) -
-57(1/2)12 + 6*57N(1/2)*y"2)/

(72*57(1/2)*(1/14400 - (1/(32*57(1/2)) - 57(1/2)/288)"2)"(1/2)),
-6*21N(L12)X*y + 40*21N(1/2)X*yA3,
-21/8 + 210*yA4 - (3*57N(1/2)*(-5N(1/2)/2 + 6*57(1/2)*y"2))/2,
-6*217(1/2)*y I+ 40*217(1/2)*y"3*z,
-514 - (5MNL2)*(-5N(1/2)/2 + B*5M(1/2)*y2))/2 + 180*y"2*272 -
(5N(L/2)*(-57(L12)12 + 6*57(1/2)*272))/2,
-6*21N(LI2)*y*z + 40%21N(1/2)*y*2"3,
-21/8 + 210274 - (3*57N(1/2)*(-5N(1/2)/2 + 6*57\(1/2)*272))/2,
-6*217(L1/2)*x*Z + 40*21N(1/2)*x*2"3,
-1/(144*(1/14400 - (1/(32*57(1/2)) - 57(1/2)/288)"2)"(1/2)) -
((1/(32*57(1/2)) - 57(1/2)/288)*(-57(1/2)/2 + 6*5A(112)*x"2))/

(1/14400 - (1/(32*57(1/2)) - 5(1/2)/288)"2)N(1/2) +
(x2*272)/(1114400 - (1/(32*5"(1/2)) - 5 (1/2)/288)"2)\(1/2) -
(-57(L/2)]2 + 6*57(1/2)*272)/

(72*57(1/2)*(1/14400 - (1/(32*57(1/2)) - 57(1/2)/288)"2)7(1/2)),

-6*21N(L1/2)*x*Z + 40*21N(1/2)*x"3%Z, -6*57(1/2)*y*z + T2*5N(1/2)*x"2*y*z,
-B*5N(1/2)*x*Z + T2¥BN(1/2)*x*y"2*Z, -6*5N(L/2)*X*y + T2*57(1/2)*x*y*Z 2}

FILE: f.surfxy.hexz.dat
Trial functions on a X-Y surface of a hex-Z node. Expansion order: 2

f= {1, 3*27N(L/2)*37(LI4)*x, 2*37N(LI2)*y, -5N(1/2)/2 + 9*157N(1/2)*x"2,
62\ (1/2)*37(3/4)*x*y, -5N(L12)/2 + 6¥51(1/2)*y"2}
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FILE: f.surfh.hexz.dat
Trial functions on a hex surface of a hex-Z node. Expansion order: 2

f= {1, (6*37(L/4)*x)/57(1/2), (6*3™(1/4)*y)/5N(1/2),
-5%(5/127)N(1/2) + 36*(15/127)N(1/2)*x"2, 18*(5/7)N1/2)*x*y,
(-5%(635/903)"(1/2))/4 + (41*(-5*(5/127)N(1/12) + 36*(15/127)"(1/2)*x*2))/
(4¥9037(1/2)) + 9*(635/301)(1/2)*y"2}

FILE: f64.vol.hexz.dat

Trial functions on the interior of a hex-Z node.
Expansion order: 6 in the X-Y plane, 4 in the Z axis.

f={1., 3.531397147659254*x, 3.531397147659254*y, 3.464101615137754*z,
-0.992094737665681 + 12.37218113922247*x"2, 15.2127765851133*x*y,
-1.386623516201175 + 4.22013418381028*x"2 + 13.07212295960745*y"2,
12.23311856289929*y*z, -1.118033988749895 + 13.41640786499874*2"2,
12.23311856289929*x*z, -7.364172208855168*x + 45.55400150508527*x"3,
-2.843918214276883*y + 52.77654471105124*x"2*y,

-6.215410878336125*x + 15.34253644105606*x"3 + 69.31604172534398*x*y"2,
-9.20730654962232*y + 30.49051331999613*x"2*y + 46.79193393431396*y"3,
-3.436716983117353*z + 42.85849266715744*y"2*z,

-3.948222038857477*y + 47.37866446628973*y*z"2,

-7.937253933193773*z + 52.91502622129182*z"3,

-3.948222038857477*x + 47.37866446628973*x*z"2,

-4.803404762060481*z + 45.28316225765551*x"2*z + 14.61897364223524*y"2*Z,
52.6986039392208*x*y*z, 1.144405667459047 - 40.06601247254547*x"2 +
168.2602416904509*x™ - 1.406229436608328*y"2,

-26.5029614362521*x*y + 193.4898333051816*x"3%y,

0.937907092856306 - 25.07947109327715*x"2 + 54.30072427626425*x"4 -
8.90944642896137*y"2 + 250.7950289971609*x"2*y"2,
-50.42654572628692*x*y + 130.7053493868988*x"3*y +
302.4959930449739*x*y"3, 1.539474445844345 - 8.59954682742714*x"2 +
5.127712221713985*x"4 - 47.18963566829997*y"2 +
173.7862848738076*x"2*y"2 + 163.2901353147327*y"4,
-22.68916516138272*y*z + 140.3528101458449*y"3*z,

1.109195636770142 + 8.88178419700125*10"-16*x"2 - 13.83251902862112*y"2 -
13.31034764124171*z"2 + 165.9902283434534*y"2*z2"2,
-28.02959589992768*y*z + 186.8639726661845*y*z"3,

1.125 - 45.00000000000001*z"2 + 210.*z"4,

-28.02959589992768*x*z + 186.8639726661845*x*z"3,

1.550292220712804 - 14.615077773959*x"2 - 4.718253454585189*y"2 -
18.60350664855365*z"2 + 175.380933287508*x"2*z"2 +
56.61904145502227*y"2*z"2, -25.51024084284776*x*Z +
157.8036901897536*x"3*z, -24.48571340145234*y*z +
211.1407608441662*x"2*y*z + 81.0858166384408*y"3*z,
-21.53081486238894*x*z + 53.14810526577217*X"3*z +
240.1178120957201*x*y"2*z, -17.00840128541522*x*y +
204.1008154249827*x*y*z"2, 11.66535373509326*x - 194.1305451510995*x"3 +
623.0154297904985*x"5 - 5.717241004090801*x*y"2,

4.691856054251322*y - 157.7548620476962*x"2*y + 717.9223962484051*x"4*y -
9.2171369165954*y"3, 9.69755937019897*x - 106.9840393103202*x"3 +
197.8190140565769*x"5 - 102.6298897072043*x*y"2 +
917.106990708609*x"3*y"2, 5.264241230760949*y -
205.4054425941535*x"2*y + 464.0234379739516*x"4*y -
27.72465200112097*y"3 + 1184.265472234982*x"2*y"3,

8.09990722997389*x - 32.6914364353943*x"3 + 9.0669661188542*x"5 -
309.2541675819773*x*y"2 + 851.414464715421*x"3*y"2 +
1255.463567163217*x*y"4, 15.68457470472548*y - 111.28234482202*x"2*y +
132.8642324402053*x4*y - 215.3509727206996*y"3 +
899.228572510356*x"2*y"3 + 561.3590955770824*y"5,

-1.060095787822544 + 83.019683621295*x"2 - 889.228572832441*x"4 +
2313.052962198468*x"6 - 1.293105354507159*y"2 -
11.53703521761299*x"2*y"2 + 9.39119022184614*y"4,

46.97581656109533*x*y - 785.2090285514575*x"3*y +
2657.541607416357*x"5*y - 53.11681331625073*x*y"3,

-1.342920857770676 + 63.30661830660207*x"2 - 448.8548508855424*x"4 +
720.0866810090344*x"6 + 21.19039857921664*y"2 -
682.8485950113239*x"2*y"2 + 3419.545944882731*x"4*y"2 -
41.92742357206416*y"4, 66.87661377195044*x*y - 878.806782568358*x"3*y +
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1698.779184200614*x"5*y - 388.6964335735138*x*y"3 +
4389.10418853506*x"3*y"3, -0.6952925511158102 + 33.14469660668446*x"2 -
108.7042593792074*x"4 + 17.72340254766721*x"6 + 23.12292942763903*y"2 -
1326.755058402552*x"2*y"2 + 3138.811085482704*x"4*y"2 -
84.7848146373794*y" + 5426.412021403232*x"2*y"4,
100.3195658795807*x*y - 505.5173873502208*x"3*y +
447.2929180746549*x"5*y - 1647.523967451927*x*y"3 +
4884.832425884538*x"3*y"3 + 4986.581349244301*x*y"5,
-1.735740046497101 + 18.46246594573032*x"2 - 45.4880727505516*x"4 +
28.55381163561682*x6 + 106.5554051807069*y"2 -
891.974915726297*x"2*y"2 + 1307.292857878232*x 4*y"2 -
918.732525582574*y"4 + 4380.113505445938*x"2*y"4 + 1915.895220021416*y"6}
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(* A Mathematica script to generate othornormal trial functions
over an XY node

(1) Define volume integral over the domain

(2) Define vector of complete polynomials up to order desired (g)

(3) Define first orthonormal trial function as 1/sqrt(volume) (f[1])

(4) Loop over lin. indep. polynomials to det. trial function coefficients
fln] = sum(a[ilffi]:i=1,n-1)+a[n]g[n] {1}

(a) calculate inner products and store in a
(b) using inner products calc a[n] -

a[n] = 1/sqrt(<g[n],g[n]>-sum(<f[i],g[n]>"2:i=1,n-1)) {2}
(c) using a[n], calculate all a[i]
a[fi] = -a[n]<f[i],g[n]>, i=1,n-1 {3}

(d) using the coefficients stored in a, calculate the nth trial
function using {1}

(* Define the volume integral over the node *)
Volint[f_] := Integratel[f,{x,-1/2,1/2},{y,-1/2,1/2}]

(* Define a vector consisting of the functions making up a complete
fourth order polynomial *)

g = {1,X,Y, X2, x*y,y"2 XN3,XN2*y X*yN2 Y3 XN XN3*Y XN 2*y N2 x*yN3,yM}
(* Define and initalize a vector for the orthogonal trial functions *)
f = Table[0,{i,15}]
(* Define and initialize a vector for the trial function coefficients *)
a = Table[0,{i,15}]
(* Define the first trial function as 1 *)
flll =1
(* Begin loop to determine trial functions *)
Do[
Print["Generating trial function ",n];

(* Calculate inner products *)

Dol a[[i]] = Volint[fl[ilT*g[[n]]].{j,1,n-1} ];
a[[n]] = Volint[g[n]]*g[[n]l};

(* Calculate sum of squares of inner products *)

sum = 0;
Do[ sum = sum+a][[j]]*2,{j,n-1} ];

(* Calculate the values of the coefficients *)

a[[n]] = 1/Sqrt[a[[n]]-sum];
Dol a[[i]l] = -a[[n]]*a[[l, {.n-1} ];

(* Store the trial function in f[n] *)

sum = 0;
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Do[ sum = sum-+a[[j]]*f[[i]].{i,n-1} I;

fl[n]] = sum + a[[n]]*g[[n]],

(* End of Do loop *)
{n,2,15}]

(* Save the set of trial functions *)

Save["f.vol.xy.dat",f]
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(* A Mathematica script to generate othornormal trial functions
over an XY side *)

VolInt[f_] := Integrate[f,{x,-1/2,1/2}]

g = {1,x,x"2}

| = Table[0,{i,3}]

a = Table[0,{i,3}]

1] =1

Do[
Print["Generating trial function ",n];
Do a[[j]] = Vollnt[I[[iTI*g[[n]]].{i,1,n-1} |;
a[[n]] = Vollnt[g[[n]]*g[[n]]];
Print["End of VolInt"];
sum = 0;
Do[ sum = sum+a[[j]]*2,{j,n-1} I;
a[[nl] = 1/Sqrtfaf[n]]-sum];
Do[ a[[j]] = -a[[n]]*a[[i]l, {i.n-1} ];
sum = 0;
Do[ sum = sum-+a[[j]I*I[[j]].{i.n-1} I;
I[[n]] = sum + a[[n]]*g[[n]],
{n,2,3

Save[*f.surf.xy.dat",[]
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(* A Mathematica script to generate the P matrix, which takes into account
the spatial dependence of the node interior.
X-Y Geometry *)

<<f.vol.xy.dat

Volint[f_] := Integratel[f,{x,-1/2,1/2},{y,-1/2,1/2}]

s={x, y}

p = Table[0,{i,15},{j,15}.{k,2}.{I,2}]

Do[

If[k==I,
Dolpl[i.jk,1]] = V0|Ent[D[f[[l]] S[[k]]]*D[l}[[[l]] S[][i]]]]]

p[[llkll]—p[[llklll
{i,15}, {j,i,15}

1,
Dolp([i,j.k,1] = V0||nt[D[f[[i]],S[[k]]]*D[f[[i]_],S[[|]]]];
[ "7k’" "’l’" "’p[[I7J’k7|]]];
IO[[I i,LK]] = IO[[IJ k |]]
] {i1 } {i,15}
b {k,2}, {I,k,2}
(* Save["pxy.dat”,p] *)

Put["P","pxy.rawdata"]
Do[PutAppend[N[p([i.j.k,I]],16],"pxy.rawdata"],{l,2},{k,2},{j,15}.,{i,15}]
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(* A Mathematica script to generate the D matrix, which couples
the spatial dependence of the node surfaces to the node interior.
X-Y Geometry

2

*kkkkkkkkkkkk
* *
4 *1
* *
*kkkkkkkkkkkk

3
<<f.vol.xy.dat
<<f.surf.xy.dat
[=1/.x->s
fl =1/ {x->1/2,y->s}
f2 =f/. {y->1/2,x->s}
mx={1,-1,1,1,-1,1,-1,1,-1
my ={1,1,-1,1, 111 11
Surflnt[fJ Integrate[f {s 1/2
d = Table[0,{i,4},{},15},{k,3}]
Do[ d[[1,},K]] = Surfint[fL[I]T*I[[K]]];

Print[" side 1 ",d[[1,],K]]];
d([3,,K]] = mx[[i]I*d[[1,], K]];
Print[" side 3 ",d[[3,},K]]];
dl[2,},k]] = Surf Int[f2[[1]]*|[[k]]]
Print[" side 2 ",d[[2,]

dl[4.},k]] = mY[[l]]*d[[ZJ K:
Print[" side 4 ",d[[4.],K]]],
{1,15},{k,3}

](* Save['dxy.dat",d] *)
Put[D,"dxy.rawdata"]
Do[PutAppend[N[d[[i,j,K]],16],"dxy.rawdata"],{k,3},{j,15}.{i,4}]

1,1,-1,1,-1,1}
-1,1,-1,1,-1,1}
1/2}]
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(* A Mathematica script to generate the U matrix,
the spatial dependence array needed in the anisotropic scattering
calculation. X-Y Geometry *)

<<f.vol.xy.dat

Volint[f_] := Integratel[f,{x,-1/2,1/2},{y,-1/2,1/2}]

s ={x,

u = Table[0,{i,15},{j,15}{I,2}]

D

o}
Dolul[i,j,N] = Volint[f[i]]*DIf[iT], s[[I1];
Print[i,” ™" ", 1," ", ul[i,,1],
{i,15}, {j,15}
fi2)
(* Save["uxy.dat",u] *)

Put[U,"uxy.rawdata"]
Do[PutAppend[N[u[[i,},!]],16],"uxy.rawdata"],{I,2}{j,15},{i,15}]
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(* A Mathematica script to generate othornormal trial functions
over an hex node

(1) Define volume integral over the domain

(2) Define vector of complete polynomials up to order desired (g)

(3) Define first orthonormal trial function as 1/sqrt(volume) (f[1])

(4) Loop over lin. indep. polynomials to det. trial function coefficients
fln] = sum(a[ilffi]:i=1,n-1)+a[n]g[n] {1}

(a) calculate inner products and store in a
(b) using inner products calc a[n] -

a[n] = 1/sqrt(<g[n],g[n]>-sum(<f[i],g[n]>"2:i=1,n-1)) {2}
(c) using a[n], calculate all a[i]
a[fi] = -a[n]<f[i],g[n]>, i=1,n-1 {3}

(d) using the coefficients stored in a, calculate the nth trial
function using {1}

*hkkkkkkkkhkhkk *hkkkkhkhkhhkhkhkhkhhhhkhkhkhrkhrhkhxk xxxxx)

Volint[f_] := (b = 3*(3/4)/Sqrt[2];
Simplify[
Integrate[f,{x,-b/3,0},{y,-x/Sqrt[3]-1/b, x/Sqrt[3]+1/b}]+
Integrate[f,{x,0, b/3}{y, x/Sqrt[3]-1/b,-x/Sqrt[3]+1/b}]])
g={1,
X' y!
x"2, xX*y, y"2,
XN3, X"2*y, x*y"2,  y"3,
XN, XN3*y, XN2*YyN2, X*YN3,  yM4,
XAS, XM*y XNJ*FYN2, XN2*yN3, X*yM4, Y5,
XNG, XAB*Y, XM*YND  XNIFYNZ, XN2*yN, x*yNS yN6}
f = Table[0,{i,28}]
a = Table[0,{i,28}]
flli=1
Do

Print["Generating trial function ",n];
Dol a[[j]] = Vollnt[f[[j]]*g[[n]]].{i,1.n-1} ];
a[[n]] = Volint[g[[n]]*g[[n]]];
Print["End of VolInt"];
sum = 0;
Do[ sum = sum+a[[j]]*2,{j,n-1} ;
a[[n]] = 1/Sqrtfaf[n]]-sum];
Dol a[[j]] = -a[[n]]*a[fil], {i,n-1} ];
sum = 0;
Do[ sum = sum-+a[[ilI*f([j]].{i.n-1} |;
fl[n]] = sum + a[[n]]*g[[n]],
{n,2,28} ]

Save["f.vol.hex.dat",f]
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(* A Mathematica script to generate othornormal trial functions
over an hexagon side *)

Volint[f_] := (b = 3(3/4)/Sqrt[2];

b*Integrate[f,{x,-1/(2b),1/(2b)}])

g = {1,x,x"2}

| = Table[0,{i,3}]

a = Table[0,{i,3}]

1] =1

Do

Print["Generating trial function ",n];
Dol a[[j]] = Vollnt[l[[il*g[[n]]].{j,1,n-1} [;
a[[n]] = Volint[g[[n]]*g[[n]]];
Print["End of VolInt"];

sum = 0;

Do[ sum = sum+a[[j]]*2,{j,n-1} ;
a[[n]] = 1/Sqrtfaf[n]]-sum];

Dol a[[j]] = -a[[n]]*a[fil], {j,n-1} ];
sum = 0;

Do[ sum = sum~+a[[j]I*I[[i.{.n-1} I;
l[r[]n%]; sum + a[[n]]*g[[n]],

Save[*f.surf.hex.dat",[]
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(* A Mathematica script to generate the P matrix, which takes into account
the spatial dependence of the node interior.
hex Geometry *)

<<f.vol.hex.dat

Volint[f_] := (b = 3(3/4)/Sqrt[2];

Simplif
|nltg]gprr!tt)(/e[[f,{x,-b/3,0} AY,-x/Sqrt[3]-1/b, x/Sqrt[3]+1/b}]+
) Integrate[f {.0, b/3}.{y, x/Sqrt[3]-1/b,-x/Sqr {3]+1/b3))
b = Table0.0,2810,281( 23,012}
Dof[[k ,
1f[k==

Dolp[fi.j.k./T] = V0|Ent[D[f[[l]] S[[k]]]*D[l}[[[l]] S[][i]]]]]

p[[llkll]—p[[llklll
{i.28}, {j.i,28}

1,
Dolp([i,j.k,1] = V0||m[D[f[[i]],S[[k]]]*D[f[[i]_],S[[|]]]];
[ "7k’" "’l’" "’p[[I7J’k’|]]];
IO[[I i,LK]] = IO[[IJ k |]]
] {i,2 } {i,28}
b {k,2}, {I,k,2}
(* Save['phex.dat”,p] *)

Put[P,"phex.rawdata”]
Do[PutAppend[N[pl[[i.j,k,I]],16],"phex.rawdata"],{l,2},{k,2},{j,28}.{i,28}]
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(* A Mathematica script to generate the D matrix, which couples
the spatial dependence of the node surfaces to the node interior.
hex Geometry

*)

(* Load vector of basis functions *)
<<f.vol.hex.dat

(* Load vector of surface trial functions)
<<f.surf.hex.dat

(* Define vectors fn where fn is the vector of interior trial functions
transformed to the surface n's coordinate system *)

b = 37(3/4)/Sqrt[2]

(* the notation a/. {x->x', y ->y'} can be read as transform the
expression "a" replacing x with x' and y with y' *)

| =1/.x->s

fi=f/.{x-> b/3 ,y->s }
f2=f/.{x-> b/6(2bs+1),y->-1/(4b)(2bs-3)}
f3=f/{x-> bl6(2bs-1),y-> 1/(4b)(2bs + 3) }
fa=f/.{x->-b/3 ,Yy->5s }
f5=f/l.{x-> bl6(2bs-1),y->-1/(4b)(2b s + 3) }
fo=f/l.{x-> b/6(2bs+1),y-> 1/(4b)(2bs-3)}

(* Define the surface integral on a node surface *)
SurfInt[f_] := b*Integratel[f,{s,-1/(2b),1/(2b)}]

(* Define and initialize the elements of the D matrix *)
d = Table[0{i,6},{j,28},{k,3}]

(* Calculate the elements of the D matrix. The D matrix is defined as
DIi,j,K] = SurfInt[f[j]*I[K]] on the ith nodal surface where f and |
are vectors of orthogonal trial functions on the node interior and
nodal surface i *)

Dol d[[1,j,kI] = SurfInt[fL[[[T]*I[KI]];
d[[2,},K]] = Surfint[f2[[j]]*I[[K]]];
d[[3,},K]] = SurfInt[f3[[]1*I[[K]I];
d[[4,j,K]] = Surfint[fA[[j]]*I[[K]]];

d[[5,},K]] = SurfInt[fS[[j]]*I[[K]]];

d[[6.j,K]] = Surfint[f6[[]]*I[[k]Il,

| 28} {k,3}

(* Store the completed D matrix *)

fLANANANIARN

k
k
3
{

(* Save['dhex.dat",d] *)
(* Write the numerical values of the D matrix to an ascii file *)

Put[D,"dhex.rawdata"]
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Do[PutAppend[N[d[[i,j,K]],16],"dhex.rawdata"],{k,3}.{j,28},i,6}]
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(* A Mathematica script to generate the U matrix,
the spatial dependence array needed in the anisotropic scattering
calculation. hex Geometry *)
<<f.vol.hex.dat
Volint[f_] := (b = 3(3/4)/Sqrt[2];
Simplify[
Integrate[f,{x,-b/3,0},{y,-x/Sqrt[3]-1/b, x/Sqrt[3]+1/b}]+
Integrate[f,{x,0, b/3}{y, x/Sqrt[3]-1/b,-x/Sqrt[3]+1/b}]])
s ={x, y}
u = Table[0,{i,28},{j,28} {I,2}]
D

0
Dol[ul[i.j, 1] = Vol Int[f[[TI*DIfT[iT]. s[[]I;
Print[i,” *,j," ", 1," ", ul[i,j,1],
{i,28}, {j,28}
2
(* Save['uhex.dat",u] *)

Put[U ,"uhex.rawdata”]
Do[PutAppend[N[u[[i,j,1]],16],"uhex.rawdata"],{l,2},{j,28},{i,28}]
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(* A Mathematica script to generate othornormal trial functions
over an XYZ node

(1) Define volume integral over the domain

(2) Define vector of complete polynomials up to order desired (g)

(3) Define first orthonormal trial function as 1/sqrt(volume) (f[1])

(4) Loop over lin. indep. polynomials to det. trial function coefficients

fln] = sum(a[iJf[i]:i=1,n-1)+a[n]g[n] {1}

(a) calculate inner products and store in a
(b) using inner products calc a[n] -

a[n] = 1/sqrt(<g[n],g[n]>-sum(<f[i],g[n]>"2:i=1,n-1)) {2}

(c) using a[n], calculate all a[i]

a[i] = -a[n]<flil,g[n]>, i=1,n-1 {3}

(d) using the coefficients stored in a, calculate the nth trial
function using {1}

*kkkkkk

9={1,

X3,

X4,

*%kk%k R R s e e s S S s S

VolInt[f_] := Integrate[f,{x,-1/2,1/2} {y,-1/2,1/2} {z,-1/2,1/2}]

xX"2*y,
X*y/\2,
y'3,

yh2*z,
y*z"2,
zZ"3,

ZN2*X,
Z*xX"2,
X*y*Z,

x"3*y,
XN2*y"2,
x*y"3 ,
y"4,
y"3*z,
yh2*z"2,
y*z"3,
"4,
Z"3*X,
ZN2*XN2,
Z*X"3,

xXN2*y*z,

X*yN2*z,
X*y*z"2}

f = Table[0,{i,35}]
a = Table[0,{i,35}]
flla=1

Do[

Print["Generating trial function ",n];
Dol a[fj]] = Volint[f[[ilI*g[[n]]].{j,1,n-1} |;
a[[n]] = Volint[g[[n]]*g[[n]]];

Print["End of VolInt"];

sum =

0;

*kkkkkkkkkkk *kkkkkkkkkkk
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Do[ sum = sum+a[[j]]*2,{j,n-1} ];
a[[n]] = 1/Sqrt[a[[n]]-sum];
Do[ a[[j]] = -a[[n]]*a[[i]l, {i.n-1} ];

sum = 0;

Do[ sum = sum-+a[[j]I*f[[i]].{j,n-1} I;

fl[n]] = sum + a[[n]]*g[[n]],
{n,2,35} ]
Save["f.vol.xyz.dat",f]
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(* A Mathematica script to generate othornormal trial functions
over an X-Y surface of a X-Y-Z node.

(1) Define volume integral over the domain

(2) Define vector of complete polynomials up to order desired (g)

(3) Define first orthonormal trial function as 1/sqrt(volume) (f[1])

(4) Loop over lin. indep. polynomials to det. trial function coefficients
fln] = sum(a[ilffi]:i=1,n-1)+a[n]g[n] {1}

(a) calculate inner products and store in a
(b) using inner products calc a[n] -

a[n] = 1/sqrt(<g[n],g[n]>-sum(<f[i],g[n]>"2:i=1,n-1)) {2}
(c) using a[n], calculate all a[i]
a[fi] = -a[n]<f[i],g[n]>, i=1,n-1 {3}

(d) using the coefficients stored in a, calculate the nth trial
function using {1}

(* Define the volume integral over the node *)
Volint[f_] := Integratel[f,{x,-1/2,1/2},{y,-1/2,1/2}]

(* Define a vector consisting of the functions making up a complete
second order polynomial *)

g = {1.x,y,x"2,x*y,y"2}
(* Define and initalize a vector for the orthogonal trial functions *)
f = Table[0,{i,6}]
(* Define and initialize a vector for the trial function coefficients *)
a = Table[0,{i,6}]
(* Define the first trial function as 1 *)
flla=1
(* Begin loop to determine trial functions *)
Do[
Print["Generating trial function ",n];

(* Calculate inner products *)

Dol a[[i]] = Volint[fl[ilT*g[[n]]].{j,1,n-1} ];
a[[n]] = Volint[g[n]]*g[[n]l};

(* Calculate sum of squares of inner products *)

sum = 0;
Do[ sum = sum+a][[j]]*2,{j,n-1} ];

(* Calculate the values of the coefficients *)

a[[n]] = 1/Sqrt[a[[n]]-sum];
Dol a[[i]l] = -a[[n]]*a[[l, {.n-1} ];

(* Store the trial function in f[n] *)

sum = 0;
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Do[ sum = sum-+a[[j]]*f[[i]].{i,n-1} I;

fl[n]] = sum + a[[n]]*g[[n]],

(* End of Do loop *)
{n,2,6} ]

(* Save the set of trial functions *)

Save["f.surfxy.xyz.dat" f]
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(* A Mathematica script to generate the P matrix, which takes into account
the spatial dependence of the node interior.
X-Y-Z Geometry *)
<<f.vo|.xyz.dat
Vollnt[f_] := Integratel[f,{x,-1/2,1/2},{y,-1/2,1/2},{z,-1/2,1/2}]
s={x,y, z}
p Table[0,{i,35},{j,35}.{k,3}.{1,3}]
Do[

If[k==I,
Dolpl[i.jk,1]] = V0|Ent[D[f[[l]] S[[k]]]*D[l}[[[l]] S[][i]]]]]

p[[llkll]—p[[llklll
{i,35}, {j,i,35}

],
Do[p([i.j.k.1] = V0”nt[D[f[[i]],S[[k]]]*D[f[[i]_],S[[|]]]];
nt[i,' kL el KT

p[[lllk]]—p[[llklll
] {i,35}, {j,35}

. {k,3}, {1k, 3}

(* Save['pxyz.dat",p] *)
Put[P,"pxyz.rawdata"]
Do[PutAppend[N[pl([i,j,k,!1],16],"pxyz.rawdata"],{l,3},{k,3},{j,35},{i,35}]

DSSSS5SS5355D55D5SD53D53D53D53D5355353353353353553D53D5335353353353353353553>55>
>>5>5>>>

(* A Mathematica script to generate the D matrix, which couples
the spatial dependence of the node surfaces to the node interior.
X-Y-Z Geometry *)

<<f.surfxy.xyz.dat

I =f/. {x->t,y->s}

Clear[f]

<<f.vol.xyz.dat

fl =1/ {x->1/2,y->t,z->s}

f2 =1 /. {y->1/2 x->t,z->s}

f3 =1 /. {z->1/2 x->t,y->s}

f4 =1/ {x->-1/2,y->t,z->s}

5 =1 /. {y->-1/2,x->t,z->s}

f6 =f /. {z->-1/2,x->t,y->s}

(*mx = Table[1,{i,35}]

my = Table[1{i,35}]

mz = Table[1,{i,35}]

mxm = {2,6,10,11,13,18,20,22,24,30,32,34,35}

mym = {3,6, 8,12,14,16,20,22,24,26,28,33,35}

mzm = {5,8,10,15,17,19,20,26,28,29,32,33,34}

Do[ mx[[mxm([i]]]] = -1;

my[[mym[[i]]]] =
mz[[mzm[[i]]]] =
{i,13

SurfInt[f_] := Integratel[f,{s,-1/2,1/2},{t,-1/2,1/2}]

d = Table[0,{i,6},{},35},{k,6}]

Do[ d[[1,},K]] = Surfint[fL[I]T*I[[K]]];

Print[" side 1 ",d[[1,],K]]];
(*d[[3,),k]] = mx[[jI]*d[[2,],K]]:*)
d[[3.,j,k]] = Surflnt[f4[[]]]*l[[k]
Print[" side 3 ",d[[3,],k ]
di[2,},k]] = SurfInt[f2[[j]]*I[[KI]];
Print[" side 2 ",d[[2,},K]]];
_(*d[[4,j.k]] = my[[j]]*d[[2,],K]];*)
d{[4.},k]] = SurfInt[fS[[]I*I[[KI]];
Print[" side 4 ",d[[4.},K]]];
d[[5,},K]] = SurfInt[f3[[j1]*I[[K]II;
Print[" side 5 ",d[[5.,K]]];
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(*d[[6,),K]] = mz[[j]]*d[[5,],K]];*)
d[[6,j,k]] = SurfInt[f6[[]]*I[[K]]];
Print[" side 6 ",d[[6,],K]]],
{1,35}.{k,6}

](* Save["dxyz.dat",d] *)

Put[D,"dxyz.rawdata"]
Do[PutAppend[N[d[[i,},k]],16],"dxyz.rawdata"],{k,6},{j,35}.{i,6}]
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(* A Mathematica script to generate the U matrix,
the spatial dependence array needed in the anisotropic scattering
calculation. X-Y-Z Geometry *)

<<f.vol.xyz.dat

Vollnt[f_] := Integratel[f,{x,-1/2,1/2},{y,-1/2,1/2},{z,-1/2,1/2}]

s={x,y, z}

u = Table[0,{i,35},{j,35}{I,3}]

D

o}
Dolul[i,j,N] = Volint[f[i]]*DIf[iT], s[[I1];
Print[i,” ™" ", 1," ", ul[i,,1],
{i,35}, {j,35}
fia
(* Save["uxyz.dat",u] *)

Put[U,"uxyz.rawdata"]
Do[PutAppend[N[u[[i,j,1]],16],"uxyz.rawdata"] {I,3}.{j,35},{i,35}]
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(* A Mathematica script to generate othornormal trial functions
over an hex-Z node. Complete expansion order is: 6th order in X and Y,
4th order in Z.

(1) Define volume integral over the domain

(2) Define vector of complete polynomials up to order desired (g)

(3) Define first orthonormal trial function as 1/sqrt(volume) (f[1])

(4) Loop over lin. indep. polynomials to det. trial function coefficients
fln] = sum(a[i]f[i]:i=1,n-1)+a[n]g[n] {1}

(a) calculate inner products and store in a
(b) using inner products calc a[n] -

a[n] = 1/sqrt(<g[n],g[n]>-sum(<f[i],g[n]>"2:i=1,n-1)) {2}
(c) using a[n], calculate all a[i]
a[i] = -a[n]<f[i],g[n]>, i=1,n-1 {3}

(d) using the coefficients stored in a, calculate the nth trial
function using {1}

*hkkkkkkkkhkhkk B e s S e xxxxx)

Volint[f_] := (b = 3(3/4)/Sqrt[2];
Simplify[
Integrate[f,{x,-b/3,0},{y,-x/Sqrt[3]-1/b, x/Sqrt[3]+1/b}{z,-1/2,1/2}]+
Integratel[f,{x,0, b/3}.{y, x/Sqrt[3]-1/b,-x/Sqrt[3]+1/b},{z,-1/2,1/2}]])
g={1,
X,Y,Z,
X2,

X3,

X4,

X5,

X6,
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f = Table[0,{i,48}]
a = Table[0,{i,48}]
=1

Do

Print["Generating trial function ",n];
Dol a[[j]] = Vollnt[f[[i]]*g[[n]]].{i,1.n-1} ];
a[[n]] = Volint[g[[n]]*g[[n]]];
Print["End of VolInt"];
sum = 0;
Do[ sum = sum+a[[j]]*2,{j,n-1} ];
a[[n]] = 1/Sqrtfaf[n]]-sum];
Dol a[[j]] = -a[[n]]*a[[il], {j,n-1} ];
sum = 0;
Do[ sum = sum-+a[[ilI*f[[j]].{i.n-1} |;
fl[n]] = sum + a[[n]]*g[[n]],
{n,2,48} ]

Save["f.hex3d64.dat",f]
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(* A Mathematica script to generate othornormal trial functions
over an XY surface FOR A SIDE OF A HEX CAN

(1) Define volume integral over the domain

(2) Define vector of complete polynomials up to order desired (g)
(3) Define first orthonormal trial function as 1/sqrt(volume) (f[1])
(4) Loop over lin. indep. polynomials to det. trial function coefficients

fln] = sum(a[iJf[i]:i=1,n-1)+a[n]g[n] {1}

(a) calculate inner products and store in a
(b) using inner products calc a[n] -

a[n] = 1/sqrt(<g[n],g[n]>-sum(<f[i],g[n]>"2:i=1,n-1)) {2}

(c) using a[n], calculate all a[i]

a[i] = -a[n]<flil,g[n]>, i=1,n-1 {3}

(d) using the coefficients stored in a, calculate the nth trial

function using {1}

(* Define the volume integral over the node *)

Volint[f_] := (b=37(3/4)/Sqrt[2] ;

b*Integrate[f {x,-1/(2 b),1/(2 b)}.{y,-1/2,1/2}])

(* Define a vector consisting of the functions making up a complete

fourth order polynomial *)

g = {1,X,y, X2, x*y,y"2}

(* Define and initalize a vector for the orthogonal trial functions *)

f = Table[0,{i,6}]

(* Define and initialize a vector for the trial function coefficients *)

a = Table[0,{i,6}]
(* Define the first trial function as 1 *)
flll =1
(* Begin loop to determine trial functions *)
Do[
Print["Generating trial function ",n];

(* Calculate inner products *)

Dol a[[i]] = Volint[fl[ilT*g[[n]]].{j,1,n-1} ];
a[[n]] = Volint[g[n]]*g[[n]l};

(* Calculate sum of squares of inner products *)

sum = 0;
Do[ sum = sum+a][[j]]*2,{j,n-1} ];

(* Calculate the values of the coefficients *)

a[[n]] = 1/Sqrt[a[[n]]-sum];
Dol a[[i]l] = -a[[n]]*a[[l, {.n-1} ];

(* Store the trial function in f[n] *)
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sum = 0;

Do[ sum = sum-+a[[j]]*f[[i]].{j,n-1} I;

fl[n]] = sum + a[[n]]*g[[n]],

(* End of Do loop *)
{n,2,6} ]

(* Save the set of trial functions *)

Save["f.surfxy.hexz.dat",f]
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(* A Mathematica script to generate othornormal trial functions
over an hex surface FOR A SIDE OF A HEX CAN

(1) Define volume integral over the domain

(2) Define vector of complete polynomials up to order desired (g)

(3) Define first orthonormal trial function as 1/sqrt(volume) (f[1])

(4) Loop over lin. indep. polynomials to det. trial function coefficients
fln] = sum(a[ilffi]:i=1,n-1)+a[n]g[n] {1}

(a) calculate inner products and store in a
(b) using inner products calc a[n] -

a[n] = 1/sqrt(<g[n],g[n]>-sum(<f[i],g[n]>"2:i=1,n-1)) {2}
(c) using a[n], calculate all a[i]
a[fi] = -a[n]<f[i],g[n]>, i=1,n-1 {3}

(d) using the coefficients stored in a, calculate the nth trial
function using {1}

Volint[f_] := (b = 3"(3/4)/Sqrt[2];
Simplify[
Integrate[f,{x,-b/3,0},{y,-x/Sqrt[3]-1/b, x/Sqrt[3]+1/b}]+
Iniegrate[f,{x,o, b/3}{y, x/Sart[3]-1/b,-x/Sqrt[3]+1/b}]])

g={1,

X1y1

X"2 x*y,y"2}

f = Table[0,{i,6}]

a = Table[0,{i,6}]

flll)] =1

Do[
Print["Generating trial function ",n];
Dol a[[j]] = Vollnt[f[[j]]*g[[n]]].{i,1.n-1} ];
a[[n]] = Volint[g[[n]]*g[[n]]];
Print["End of VolInt"];
sum = 0;
Do[ sum = sum+a[[j]]*2,{j,n-1} ;
a[[n]] = 1/Sqrt[a[[n]]-sum];
Dol a[[j]] = -a[[n]]*a[fil], {j,n-1} ];
sum = 0;
Do[ sum = sum-+a[[ilI*f([j]].{i.n-1} |;
fl[n]] = sum + a[[n]]*g[[n]],
{n,2,6} ]

Save["f.surfh.hexz.dat",f]
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(* A Mathematica script to generate the P matrix, which takes into account
the spatial dependence of the node interior.
hex-Z Geometry *)

<<f64.vol.hexz.dat

f = Simplify[N[f,15]]

Volint[f_] :=
b = 37(3/4)/Sqrt[2];

Simplify[
Integrate[f,{x,-b/3,0},{y,-x/Sqrt[3]-1/hb,
x/Sqrt[3]+1/b},{z,-1/2 1/2}]+

I nte rate [ f, {x, 0, b/73%},{y,

XISAM3]-LIb.-x/Sqr3]+ Lib 2, 1/2.1/2}]])
fw - {Txagle[o {i,48).{j,48}.{k,3}.{,3]]
Dof[[k |

If[k==l,

Do[

plli.i.k 1] = V0“ﬂt[D[f[[l]] S[[k]]]*D[f[[l]] S[[|]]]]
Print[i,” NI pILLKITT T

pIl.i. k1] = IO[[IJ k |]]

{l 48}, {1,i,48}

Dol

plli.i.k 1] = V0“ﬂt[D[f[[l]] S[[k]]]*D[f[[l]] S[[|]]]]
Print[i,” NI pILLKITT T

IO[[I i,1,K]] = pf[i.j,k |]]

] {i,48}, {48}

(*] ;Save["364.phexz.dat",p],
" {k,3}, {I.,k,3}

stmp = OpenWrite['s64.phexz.rawdata"]
WriteString[stmp,"P \n"]
Do[
Write[ stmp, Chop[ N[ p[[i,j,k,!]], 12 ], 101217,
{1,3},{k,3},{j,48} {i,48}

Close[stmp]
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(* Script for calculating the hex-z D matrix. The sides are numbered
as follows:

Sides 1-6 : rectangular faces starting at x = b/3, numbered counter
clockwise

Side 7 :upper hexagonal face

Side 8 :lower hexagonal face

)

(* Number of internal moments *)
(* 4th order in z, 6th order in xy *)
nFluxMom = 48

(* Number of surface moments *)
(* quadratic in s and t *)
nCurrMom = 6

(* Load vector of surface trial functions *)

(* xy trial functions on the rectangular faces *)
<< f.surfxy.hexz.dat

f=Simplify[N[f,15]]

hxy = f

hxy =hxy/ {x->s,y->t}

Clear[f]

(* hex trial functions on the z faces *)
<< f.surfh.hexz.dat

f=Simplify[N[f,15]]

hz =

hz=hz/ {x->s,y->t}

Clear[f]

(* define a function which returns the appropriate surface trial function *)

hli_,j_1=(If{i <7, hxy[[i]l, hz[[i]] ]);

(* Define surface integral: sides 1-6 - rectangular domain
sides 7-8 - hexagonal domain *)
surfint[f_,i_]=(
If

i < 7,b=3"(3/4)/Sqrt[2];
b*Integrate[f,{s,-1/(2 b),1/(2 b)},{t,-1/2,1/2}],
b = 37(3/4)/Sqrt[2];
Simplify[
Integrate[f,{s,-b/3,0},{t,-s/Sqrt[3]-1/b, s/Sqrt[3]+1 /b}]+
Integrate[f,{s,0, b/3},{t, s/Sqrt[3]-1/b,-s/Sqrt[3]+1 /b}]
]

)i
(* Load vector of internal basis functions, f *)
<<f64.vol.hexz.dat
f=Simplify[N[f,15]]
(* Define vectors fp where fp[[n]] is the vector of interior trial functions
transformed to the surface n's coordinate system *)
b = 37(3/4)/Sqrt[2]

fp = Table[ 0, {i,8} ]
fp[[A]] =f/. {x-> b3 y->s L Z->t}

foll2]] = f/. {x -> bl6(2bs + 1),y -> -1/(4b)(2b s - 3), z -> t }
fol[8]] = f/. {x-> b/6(2bs-1),y-> 1/(4b)(2bs +3), z->t}
fpl[4]] = /. {x -> -b/3 Yy ->s L Z->t}

fol[5]] = f/. {x -> b/6(2b's - 1),y -> -1/(4b)(2b s + 3), z -> t }
fol[6]] = f/. {x -> bl6(2bs + 1),y -> 1/(4b)(2bs-3) z->t}
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fp[[rN=f/.{z-> 1/2,x-> s,y-> t}
fp[[8l] =f/.{z->-1/2,x-> s,y-> t}

(* Define and initialize the elements of the D matrix *)

d = Table[0,{i,8},{j,nFluxMom},{k,nCurrMom}]

D
0(5[[|,J k]] = surflnt[ Slmpllfy[ N[ fp[[l,j]] h[| k] 141101
Print["Surface “,i," Pair[ ",},", ",k," 1 =", N[ d[[i,j,kK]] 11,

{i,8},{i,nFluxMom}, {k,nCurrMom}

(* Store the completed D matrix *)

(* Save['s64.dhexz.dat",d] *)

(* Write the numerical values of the D matrix to an ascii file *)

stmp = OpenWrite['s64.dhexz.rawdata"]

WriteString[stmp,"D \n"]

Do[
Write[ stmp, Chop[ N[ d[[i,j,k]],12 ], 10*-121]],
{k,nCurrMom}, {j,nFluxMom}, {i,8}

Close[stmp]
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(* A Mathematica script to generate the U matrix,
the spatial dependence array needed in the anisotropic scattering
calculation. hex-Z Geometry *)

<<f64.vol.hexz.dat

f=Simplify[N[f,15]]

Volint[f_] := (b = 3(3/4)/Sqrt[2];
Simplify[
Integrate[f,{x,-b/3,0},{y,-x/Sqrt[3]-1/b, x/Sqrt[3]+1/b}{z,-1/2, 1/2}]+
Integratel[f,{x,0, b/3}.{y, x/Sqart[3]-1/b,-x/Sqrt[3]+1/b},{z,-1/2, 1/2}]])

s=1{X,V, z}
B S[Table[o {i,48},{j,48},{1,3}1]
Dolulfi,j,I]1 = Vollnt[f[[J]]*D[f[[I]] SLINIE
[’ ’J’ 1|7 7 [[ Y.I’]]]l
{i,48}, {j, 48}
]{i,s}

(* Save['s64.uhexz.dat",u] *)
Put[U,"s64.uhexz.rawdata"]
Do[PutAppend[N[ul[i,j,I]],16],"s64.uhexz.rawdata"],{l,3},{j,48},{i,48}]
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Left Intentionally Blank
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Left Intentionally Blank
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APPENDIX B
DESCRIPTION OF FILE COMPXS

C * * * * *k%x * * *k%x * * *k%x * * * * * * * *k%x

C -

C PREPARED 3/7/78 AT ANL -

C LAST REVISED 08/31/95 -

C -

CF COMPXS

CE MACROSCOPIC COMPOSITION CROSS SECTIONS -
C

C * * * * *k% * * *k%x * * *k%x * * * * *k% * * *k%x

C

cs FILE STRUCTURE -

cs -

cs RECORD TYPE PRESENT IF -

CS e s s s s s s ey e s s e
cs SPECIFICATIONS ALWAYS -

cs COMPOSITION INDEPENDENT DATA ALWAYS -

CS wwwmweoes (REPEAT FOR ALL COMPOSITIONS) -

CS * COMPOSITION SPECIFICATIONS ALWAYS -

CS * wwoor (REPEAT FOR ALL ENERGY GROUPS -

CS **  INTHE ORDER OF DECREASING -

CS ** ENERGY)

CS * * COMPOSITION MACROSCOPIC GROUP  ALWAYS -
CS * * CROSS SECTIONS -

CS *kkkkkkkk -

cs POWER CONVERSION FACTORS ALWAYS -

cs -

C -

C

CD NGROUP NUMBER OF ENERGY GROUPS.

CD ICHI PROMPT FISSION SPECTRUM FLAG FOR THIS

CD COMPOSITION. ICHI=-1 IF COMPOSITION USES THE

CD SET-WIDE PROMPT CHI GIVEN IN SET CHI RECORD

CD (BELOW). ICHI=0 IF COMPOSITION IS NOT

CD FISSIONABLE. ICHI=1 FOR COMPOSITION PROMPT CHI
CD VECTOR. ICHI=NGROUP FOR COMPOSITION PROMPT CHI
CD MATRIX.

CD NUP(I) NUMBER OF GROUPS OF UPSCATTERING INTO GROUP |
CD FROM LOWER ENERGY GROUPS FOR THE CURRENT

CD COMPOSITION

CD NDN(l) NUMBER OF GROUPS OF DOWNSCATTERING INTO GROUP |
CD FROM HIGHER ENERGY GROUPS FOR THE CURRENT

CD COMPOSITION

CD ISCHI PROMPT FISSION SPECTRUM FLAG. ISCHI=0 IF

CD THERE IS NO SET-WIDE PROMPT CHI. ISCHI=1 IF

CD THERE IS A SET-WIDE PROMPT CHI VECTOR.

CD ISCHI=NGROUP IF THERE IS A SET-WIDE PROMPT

CD CHI MATRIX.

CD NFAM NUMBER OF DELAYED NEUTRON FAMILIES.

CD MULT 2 FOR IBM MACHINES, 1 OTHERWISE.

C

CR SPECIFICATIONS (TYPE 1) -

C -

CL NCMP,NGROUP,ISCHI,NFCMP,MAXUP,MAXDN,NFAM,NDUM1,NDUM2,NDUM3
C -

CW 10 -

C

CD NCMP NUMBER OF COMPOSITIONS.

CD NFCMP NUMBER OF FISSIONABLE COMPOSITIONS. -
CD MAXUP MAXIMUM NUMBER OF GROUPS OF UPSCATTERING FOR -
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CD
CD
CD
CD
CD
CD
C
C

THE SET.
MAXDN MAXIMUM NUMBER OF GROUPS OF DOWNSCATTERING
FOR THE SET.
MAXORD ANISOTROPIC SCATTERING ORDER -
NDUM2 RESERVED.
NDUM3 RESERVED. -

C

CR
C
CcC
C
CL
CL
CL
C

COMPOSITION INDEPENDENT DATA (TYPE 2)
ALWAYS PRESENT -
((CHI(1,9),1=1,ISCHI),J=1,NGROUP),(VEL(J),J=1,NGROUP),

1(EMAX(J),J=1,NGROUP),EMIN,((CHID(J,K),J=1,NGROUP) K=1 LNFAM),

2(FLAM(K).K=1,NFAM),(NKFAM(J),J=1 NCMP)

Ccw MULT*(NGROUP*(ISCHI+2+NFAM)+1+NFAM)+NCMP

C
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
C
C

CHI PROMPT FISSION FRACTION INTO GROUP J FROM

GROUP I. IF ISCHI=1, THE LIST REDUCES TO -
(CHI(J),J=1,NGROUP), WHERE CHI(J) IS THE -
FISSION FRACTION INTO GROUP J.

VEL MEAN NEUTRON VELOCITY IN GROUP J (CM/SEC) -

EMAX MAXIMUM ENERGY BOUND OF GROUP J (EV). -

EMIN MINIMUM ENERGY BOUND OF SET (EV).

CHID FRACTION OF DELAYED NEUTRONS EMITTED INTO
NEUTRON ENERGY GROUP J FROM PRECURSOR -
FAMILY K.

FLAM DELAYED NEUTRON PRECURSOR DECAY CONSTANT
FOR FAMILY K.

NKFAM NUMBER OF FAMILIES TO WHICH FISSION IN -

COMPOSITION J CONTRIBUTES DELAYED NEUTRON

PRECURSORS.

C
CR
C
CcC
C
CL
CL
C
CcC
C

COMPOSITION SPECIFICATIONS (TYPE 3) -
ALWAYS PRESENT -

ICHI,(NUP(I),I=1,NGROUP),(NDN(I),I=1,NGROUP), -
1(NUMFAM(1),1=1,NKFAMI) -

NKFAMI = NKFAM(K) -

CW 1+2*NGROUP+NKFAMI -

C
CD
CD
C

NUMFAM
ARRAY SNUDEL(I).

C

C

CR
C

CC
C

CL
CL
CL
CL

CcC
CcC

COMPOSITION MACROSCOPIC GROUP CROSS SECTIONS (TYPE 4)

ALWAYS PRESENT -

XAXTOT, XREM,XTR,XE,XNF,(CHI(1),I=1,ICHI),
1(XSCATU(l),I=1.NUMUP).XSCATJ,(XSCATD(I).I=1,NUMDN),
2PC,A1,B1,A2,B2,A3,B3,(SNUDEL(I),1=1,NKFAMI),XN2N,

3((XSCAUP(I,L),I=1,NUMUP),(XSCAJP(, L).1=1,NOMDN), L.=1,MAXORD)

NUMUP = NUP FOR THE CURRENT GROUP
NUMDN = NDN FOR THE CURRENT GROUP
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CC NKFAMI = NKFAM(K) -
C -
CW MULT*(15+ICHI+NUMUP+NUMDN-+NKFAMI) IF ICHI.GT.0 -
CW MULT*(15+NUMUP+NUMDN+NKFAMI) IF ICHILLEQ.-1 -
CW MULT*(13+NUMUP+NUMDN+NKFAMI) IF ICHILEQ.O -

C -

CD XA ABSORPTION CROSS SECTION. -

CD XTOT TOTAL CROSS SECTION.

CD XREM REMOVAL CROSS SECTION, TOTAL CROSS SECTION -
CD FOR REMOVING A NEUTRON FROM GROUP J DUE TO ALL -
CD PROCESSES.

CD XTR TRANSPORT CROSS SECTION.

CD XF FISSION CROSS SECTION, PRESENT ONLY IF -

CD ICHI.NE.O.

CD XNF TOTAL NUMBER OF NEUTRONS EMITTED PER FISSION -
CD TIMES XF, PRESENT ONLY IF ICHI.NE.O. -

CD CHI PROMPT FISSION FRACTION INTO GROUP J FROM -
CD GROUP |, PRESENT ONLY IF ICHI.GT.O. IF ICHI=1, -

CD THE LIST REDUCES TO THE SINGLE NUMBER CHI, -

CD WHICH IS THE PROMPT FISSION FRACTION INTO -

CD GROUP J.

CD XSCATU TOTAL SCATTERING CROSS SECTION INTO GROUP J -
CD FROM GROUPS J+NUP(J),J+NUP(J)-1,...,0+2,J+1, -

CD PRESENT ONLY IF NUP(J).GT.O0.

CD XSCATJ TOTAL SELF-SCATTERING CROSS SECTION FROM -
CD GROUP J TO GROUP J.

CD XSCATD TOTAL SCATTERING CROSS SECTION INTO GROUP J -
CD FROM GROUPS J-1,J-2,...,J-NDN(J), PRESENT -

CD ONLY IF NDN(J).GT.0.

CD PC PC TIMES THE GROUP J REGION INTEGRATED -

CD FLUX FOR THE REGIONS CONTAINING THE CURRENT -
CD COMPOSITION YIELDS THE POWER IN WATTS IN THOSE -
CD REGIONS AND ENERGY GROUP J DUE TO FISSIONS -

CD AND NON-FISSION ABSORPTIONS.

CD Al FIRST DIMENSION DIRECTIONAL DIFFUSION -

CD COEFFICIENT MULTIPLIER.

CD B1 FIRST DIMENSION DIRECTIONAL DIFFUSION -

CD COEFFICIENT ADDITIVE TERM.

CD A2 SECOND DIMENSION DIRECTIONAL DIFFUSION -

CD COEFFICIENT MULTIPLIER.

CD B2 SECOND DIMENSION DIRECTIONAL DIFFUSION -

CD COEFFICIENT ADDITIVE TERM.

CD A3 THIRD DIMENSION DIRECTIONAL DIFFUSION -

CD COEFFICIENT MULTIPLIER.

CD B3 THIRD DIMENSION DIRECTIONAL DIFFUSION -

CD COEFFICIENT ADDITIVE TERM.

CD SNUDEL NUMBER OF DELAYED NEUTRON PRECURSORS PRODUCED -
CD IN FAMILY NUMBER NUMFAM(I) PER FISSION -

CD IN GROUP J.

CD XN2N N,2N REACTION CROSS SECTION -

C

CN THE MACROSCOPIC XN2N(J) TIMES THE FLUX IN GROUP-
CN J GIVES THE RATE AT WHICH N,2N REACTIONS OCCUR -
CN IN GROUP J. THUS, FOR N,2N SCATTERING, -

CN XN2N(J)=0.5*(SUM OF SCAT(J TO G)) SUMMED OVER -

CN ALL G WHERE SCAT IS THE N,2N SCATTERING MATRIX.-

C -

CD XSCAUP SAME AS XSCATU BUT FOR ANISOTROPIC ORDER L -
CD XSCAJP SAME AS XSCATJ BUT FOR ANISOTROPIC ORDER L -
C -

C

C

CR POWER CONVERSION FACTORS (TYPE 5) -

C -

cc ALWAYS PRESENT -

C -

CL (FPWS(I),I=1,NCMP),(CPWS(l),I=1,NCMP) -

C -

CW 2*MULT*NCMP -
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C -
CD FPWS FISSIONS/WATT-SECOND FOR EACH COMPOSITION -

CD CPWS CAPTURES/WATT-SECOND FOR EACH COMPOSITION
C -

CN -

CN IF ENERGY CONVERSION DATA ARE SUPPLIED FOR -
CN NEITHER FISSION NOR CAPTURE FOR A PARTICULAR -
CN COMPOSITION, BOTH FPWS AND CPWS SHOULD BE SET -
CN TO THE ARTIFICIAL VALUE OF -1. OE+20 FOR THAT -

CN COMPOSITION.

CN -

CN IF EITHER FPWS(l) OR CPWS(l) (BUT NOT BOTH) IS -

CN SPECIFIED BY THE USER FOR COMPOSITION I, THEN -
CN THE ITEM WHICH IS NOT SPECIFIED SHOULD BE SET -

CN TO ZERO FOR COMPOSITION I.

CN

CN AT THE PRESENT TIME, REBUS-3 IS THE ONLY CODE -

CN WHICH USES THE DATA IN RECORD TYPE 5, AND -

CN THE -1.0E+20 NUMBERS ARE USED TO INDICATE THAT -
CN THE USER HAS SPECIFIED NEITHER FISSION NOR -

CN NON-FISSION CAPTURE ENERGY CONVERSION FACTORS -
CN FOR VARIOUS COMPOSITIONS.

C

C

CEOF
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APPENDIX C
DESCRIPTION OF VARIANT OUTPUT FILE NHFLUX

C *kk%k *kkkkkkkkkkkkhkhkkkkhkkhkhhkhhkhhhhiiik *kkkkkk *kkkkkkkk

C -

C PREPARED 3/01/82 -

C LAST REVISED 8/31/95 -

C REVISED 5/29/91 FOR DIF3D 7.0 -

C -

CF NHFLUX

CE REGULAR NODAL FLUX-MOMENTS AND INTERFACE PARTIAL CURRENTS -
C

CN ORDER OF GROUPS IS ACCORDING TO DECREASING -
CN ENERGY. NOTE THAT DOUBLE PRECISION FLUXES ARE -
CN GIVEN WHEN MULT=2

C -

C *kk%k *kkkkkkkkkkkhkhkhkkkkkkkhkhhkhhkhhhhiirx *kkkkkkkkkkkhkkhkhkhkhkhkk

C

CS FILE STRUCTURE -

CS -

CS RECORD TYPE RECORD PRESENT IF -

CS S T ====== === —C -
CS FILE IDENTIFICATION ALWAYS -

CS SPECIFICATIONS 1D  ALWAYS -

CS INTEGER POINTERS 2D NSURF.GT.1 -

CS -

CS #xrxxeriix(REPEAT FOR ALL GROUPS) -

CS * FLUX MOMENTS 3D  ALWAYS -

CS * XY-DIRECTED PARTIAL CURRENTS 4D  ALWAYS -
CS * Z -DIRECTED PARTIAL CURRENTS 5D NDIM.EQ.3 -

C S *kkkkkkkkkk

C -

C

C

CR FILE IDENTIFICATION -

C -

CL HNAME,(HUSE(l),I=1,2),IVERS -

C -

CW 1+3*MULT=NUMBER OF WORDS -

C -

CD HNAME HOLLERITH FILE NAME - NHFLUX - (A6) -
CD HUSE() HOLLERITH USER IDENTIFICATION (A6) -
CD IVERS FILE VERSION NUMBER

CD MULT DOUBLE PRECISION PARAMETER -

CD 1- A6 WORD IS SINGLE WORD

CD 2- A6 WORD IS DOUBLE PRECISION WORD -

C

C

C

CR SPECIFICATIONS (1D RECORD) -

C

CL NDIM,NGROUP,NINTIL,NINTJ,NINTK, ITER EFFK,POWER,NSURF,
CL NMOM NINTXY, NPCXY NSCOEF ITRORD IAPRX ILEAK, IAPRXZ ILEAKZ -
CL IORDER IDUM

C -
CW 20 =NUMBER OF WORDS -

C -

CD NDIM NUMBER OF DIMENSIONS -

CD NGROUP NUMBER OF ENERGY GROUPS

CD NINTI NUMBER OF FIRST DIMENSION FINE MESH INTERVALS -
CD NINTJ NUMBER OF SECOND DIMENSION FINE MESH INTERVALS -
CD NINTK NUMBER OF THIRD DIMENSION FINE MESH INTERVALS. -
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CD NINTK.EQ.1 IF NDIM.LE.2

CD ITER OUTER ITERATION NUMBER AT WHICH FLUX WAS -

CD WRITTEN

CD EFFK EFFECTIVE MULTIPLICATION FACTOR

CD POWER POWER IN WATTS TO WHICH FLUX IS NORMALIZED -
CD NSURF NUMBER OF XY-PLANE SURFACES PER NODE. -
CD NMOM NUMBER OF FLUX MOMENTS IN NODAL APPROXIMATION -
CD NINTXY NUMBER OF MESH CELLS (NODES) ON XY-PLANE -
CD NPCXY NUMBER OF XY-DIRECTED PARTIAL CURRENTS ON -
CD XY-PLANE

CD NSCOEF NUMBER OF PARTIAL CURRENT MOMENTS PER NODE -
CD SURFACE

CD ITRORD ORDER OF THE POLYNOMIAL APPROXIMATION OF THE -
CD SOURCE WITHIN THE NODE

CD IAPRX ORDER OF THE POLYNOMIAL APPROXIMATION OF THE -
CD FLUXES WITHIN THE NODE

CD ILEAK ORDER OF THE POLYNOMIAL APPROXIMATION OF THE -
CD LEAKAGES ON THE SURFACES OF THE NODES -

CD IAPRXZ ORDER OF THE PN EXPANSION OF THE FLUX -

CD ILEAKZ ORDER OF THE PN EXPANSION OF THE LEAKAGE -
CD IORDER MESH ORDERING SENTINEL

CD =0, ORIGINAL NODAL ORDERING PRIOR TO DIF3D 7.0 -

CD =1, REVISED NODAL ORDERING, DIF3D 7.0 -

CD IDUM RESERVED FOR FUTURE USE -

C -

CN IORDER PERMITS DETECTION OF NHFLUX FILES FROM -

gN DIF3D VERSIONS PRECEDING DIF3D 7.0 -

C

C

CR INTEGER POINTERS (2D RECORD) -

C -

SC PRESENT IF NSURF.GT.1 -

CL  (IPCPNT(1,3),I=1,NSURF),J=1,NINTXY),(IPCBDY(l), I=1NPCBDY), -
CL (ITRMAP(I),I=1,NINTXY)

C

CW NSURF*NINTXY + NPCBDY + NINTXY =NUMBER OF WORDS -
C -
CD IPCPNT&I,J) POINTERS TO INCOMING XY-PLANE PARTIAL CURRENTS.-

CD IPCBDY(l) POINTERS TO OUTGOING PARTIAL CURRENTS ON OUTER -
CD XY-PLANE BOUNDARY.

CD ITRMAP(I) TRANSFORMATION MAP BETWEEN NODAL AND GEODST -
CD MESH CELL ORDERINGS.

CD NPCBDY = NPCXY - NSURF*NINTXY. -

C -

CN IPCBDY WILL INCLUDE OUTGOING PARTIAL CURRENTS -

CN ON CERTAIN SYMMETRY BOUNDARIES TO AVOID VECTOR -

CN RECURSION IN DIF3D 7.0 AND LATER VERSIONS. -

C -

CN THE NODAL ORDERING IN DIF3D 7.0 AND LATER -

CN VERSIONS HAS ACTIVE NODES ORDERED BY COLOR, -

CN FOLLOWED BY INACTIVE NODES.

C

C

CR REGULAR FLUX MOMENTS (3D RECORD) -

C -

CL ((FLUX(1,3),I=1,NMOM),J=1,NINTXY)------ SEE STRUCTURE BELOW----- -
C -
CW NMOM*NINTXY*MULT = NUMBER OF WORDS -
C -

C DO 1K=1,NINTK -

C 1 READ(N) *LIST AS ABOVE* -

C

CD FLUX(l,9) REGULAR FLUX MOMENTS BY NODE FOR THE PRESENT -
CD GROUP

C -

C
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C
CR REGULAR XY-DIRECTED PARTIAL CURRENTS (4D RECORD) -
C -
CL ((PCURRH(I,M),M=1,NSCOEF),I=1,NPCXY) ----SEE STRUCTURE BELOW---- -
C

CW NPCXY*NSCOEF*MULT = NUMBER OF WORDS -
C -

C DO 1K=1,NINTK -

C 1READ(N) *LIST AS ABOVE* -

C

CD PCURRH(I,M) OUTGOING XY-DIRECTED PARTIAL CURRENTS -

CD ACROSS ALL XY-PLANE SURFACES FOR THE -
CD THE PRESENT GROUP
C

CN ELEMENTS I=1,NSURF*NINTXY OF EACH VECTOR PCURRH(.,M) MAP TO -

CN SURFACE S OF NODE N WHERE S = MOD(I-1 NSURF)+1 AND

CN = (I-1)/NSURF + 1

CN -

CN THE REMAINING ELEMENTS (PCURRH(I,M),I=NSURF*NINTXY+1,NPCXY), -

CN IF ANY, CORRESPOND TO INCOMING PARTIAL CURRENTS (M=1) OR INCOMING-
CN HALF- ANGLE INTEGRATED FLUXES (M=2) FOR NODE SURFACES ON THE OUTER-
CN (POSSIBLY IRREGULAR) XY-PLANE BOUNDARY.

CN

CN THE FOLLOWING ORIENTATION IS USED TO DENOTE -

CN SURFACES J=1,...,NSURF AND NEIGHBORING NODES J=1,...,NSURF: -

CN -

CN * Y -

CN J=3* *]J=2 A -

CN * * J=2 -

CN * * Fekokdkokk

CN * * * % -

CN J=4* *J=1 J=3* *J=1 +--->X -

CN * * % -

CN * * [ra— -

CN J=5* *J=6 J=4 -

CN * -

CN

CN HEXAGONAL NODES CARTES|AN NODES -
CN NSURF =6 NSURF =4

C -

C

C
CR REGULAR Z-DIRECTED PARTIAL CURRENTS (5D RECORD) -
C -
CL (((PCURRZ(I,M,J),I=1,NINTXY),M=1,NSCOEF),J=1,2) -
c. e SEE STRUCTURE BELOW---------

C -
CW NINTXY*NSCOEF*2*MULT = NUMBER OF WORDS-- -
C -

C DO 1K=1,NINTK1 -

C 1READ(N) *LIST AS ABOVE* -

C

CcC WITH NINTK1 = NINTK + 1 -

C -

CD PCURRZ(I,M,J) REGULAR Z-DIRECTED PARTIAL CURRENTS (M=1) AND -
CD HALF-ANGLE INTEGRATED FLUXES (M=2) IN -

CD PLUS- (J=1) AND MINUS- (J=2) Z DIRECTIONS -

CD ACROSS ALL AXIAL BOUNDARIES FOR THE PRESENT -
CD GROUP

C -

CN E.G. INCOMING PARTIAL CURRENTS FOR NODE | ON -
CN AXIAL MESH INTERVAL K ARE PCURRZ(l,1,1) ON THE -
CN LOWER BOUNDARY (RECORD K) AND PCURRZ(l,1,2) ON -
CN THE UPPER AXIAL BOUNDARY (RECORD K+1). -

C -

C

CEOF
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APPENDIX D
DESCRIPTION OF THE BCD INPUT FILE A.DIF3D

C *kk%k *kkkkkkkkkkkhkhkkkkkhkkhkhhkhhkhhhhiiik *kkkkkk *kkkkkkkk

C -

C REVISED 8/31/95 -

C -

CF A.DIF3D

CE ONE-, TWO-, AND THREE- DIMENSIONAL DIFFUSION THEORY -
CE MODULE-DEPENDENT BCD INPUT

C

CN THIS BCD DATASET MAY BE WRITTEN EITHER -

CN IN FREE FORMAT (UNFORM=A.DIF3D) OR

CN ACCORDING TO THE FORMATS SPECIFIED FOR EACH -
CN CARD TYPE (DATASET=A.DIF3D). -

CN -

CN COLUMNS 1-2 MUST CONTAIN THE CARD TYPE NUMBER. -
CN

CN A BLANK OR ZERO FIELD GIVES THE DEFAULT OPTION -
CN INDICATED.

CN -

CN NON-DEFAULTED DATA ITEMS ON THE A.DIF3D -

CN DATA SET ALWAYS OVERRIDE THE CORRESPONDING -
CN DATA ON THE RESTART DATA SET DIF3D. -

C -

C *kk%k *kkkkkkkkkkkkhkhkkkkhkkkkhhkhhkhhhhiiik *kkkkkkkkkkkhkkkhkhkhkhkk

C

CR PROBLEM TITLE (TYPE 01) -

C -

CL FORMAT-----(12,4X,11A6) -

C -

CD COLUMNS CONTENTS...IMPLICATIONS, IF ANY -

CD oo . o s -
CD 1-2 01 -

CD

CD 7-72 ANY ALPHANUMERIC CHARACTERS (1 CARD ONLY). -

CR STORAGE AND DUMP SPECIFICATIONS (TYPE 02) -
CL FORMAT-----(12,4X,316) -

CD # COLUMNS CONTENTS...IMPLICATIONS, IF ANY -
CD - oo o oo oo oo oo oo o oo o oo oo oo c-

CD

CD 2 7-12 POINTR CONTAINER ARRAY SIZE IN FAST CORE MEMORY (FCM) -
CD IN REAL*8 WORDS (DEFAULT= 10000)

CD

CD 3 13-18 POINTR CONTAINER ARRAY SIZE IN EXTENDED CORE -
CD MEMORY (ECM) IN REAL*8 WORDS (DEFAULT=30000). -

CD -

CD 4 19-24 POINTR DEBUGGING EDIT. -

CD 0...NO DEBUGGING PRINTOUT (DEFAULT). -
CD 1...DEBUGGING DUMP PRINTOUT. -

CD 2...DEBUGGING TRACE PRINTOUT. -

CD 3...BOTH DUMP AND TRACE PRINTOUT. -

C -

C

C

CR PROBLEM CONTROL PARAMETERS (TYPE 03) -
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FORMAT-----(12,4X,1116)

#
1
2

12 67-72 OPTIMUM OVERRELAXATION FACTOR ESTIMATION ITERATION

COLUMNS CONTENTS..

7-12 PROBLEM TYPE.

0...K-EFFECTIVE PROBLEM (DEFAULT).

1...FIXED SOURCE PROBLEM.

SOLUTION TYPE.
0...REAL SOLUTION (DEFAULT).
1...ADJOINT SOLUTION.

2...BOTH REAL AND ADJOINT SOLUTION.

CHEBYSHEV ACCELERATION OF OUTER ITERATIONS.
0...YES, ACCELERATE THE OUTER ITERATIONS (DEFAULT).

1...NO ACCELERATION.
25-30

31-36  OUTER ITERATION CONTROL.
-3...BYPASS DIF3D MODULE.

-2...CALCULATE DATA MANAGEMENT PARAMETERS AND PERFORM

NEUTRONICS EDITS ONLY.

IMPLICATIONS, IF ANY

-1...CALCULATE DATA MANAGEMENT PARAMETERS CALCULATE

OVERRELAXATION FACTORS AND PERFORM NEUTRONICS

EDITS ONLY.

.GE.O...MAXIMUM NUMBER OF OUTER ITERATIONS (DEFAULT=30).

37-42 RESTART FLAG.

0... THIS IS NOT A RESTART (DEFAULT).

1.. THIS IS A RESTART PROBLEM.

43-48 JOB TIME LIMIT, MAXIMUM (CP AND PP(OR WAIT)) PROCESSOR -

SECONDS (DEFAU LT= 1000000000)

49-54 NUMBER OF UPSCATTER ITERATIONS PER OUTER ITERATION

(DEFAULT=5). PERTINENT TO UPSCATTER PROBLEMS ONLY.
10 55-60 CONCURRENT ITERATION EFFICIENCY OPTION.

0...PERFORM THE ESTIMATED NO. OF INNER ITERATIONS FOR -

EACH GROUP.

1...AVOID THE LAST PASS OF INNER ITERATIONS IN THOSE
GROUPS FOR WHICH THE NO. OF ITERATIONS IN THE LAST -
PASS ARE LESS THAN A CODE DEPENDENT THRESHOLD.

11 61-66 ACCELERATION OF OPTIMUM OVERRELAXATION FACTOR

CALCULATION.
0...NO ACCELERATION (DEFAULT).

MINIMUM PLANE-BLOCK (RECORD) SIZE IN REAL*8 WORDS FOR -
I/O TRANSFER IN THE CONCURRENT INNER ITERATION
STRATEGY. THE DEFAULT (=4500) IS HIGHLY RECOMMENDED.

1...ASYMPTOTIC SOURCE EXTRAPOLATION OF POWER ITERATIONS-
USED TO ESTIMATE THE SPECTRAL RADIUS OF EACH INNER -
(WITHIN GROUP) ITERATION MATRIX.

CONTROL. THE DEFAULT (=50) IS STRONGLY RECOMMENDED.

THE MAXIMUM NUMBER OF OUTER ITERATIONS SENTINEL

SPECIFIES THE NUMBER OF OUTERS THAT CAN BE PERFORMED

(COLS. 31-36) EACH TIME THE DIF3D MODULE IS INVOKED.
THE DIF3D TERMINATION PROCEDURE WILL ALWAYS:

1...(RE)WRITE THE APPROPRIATE FLUX FILES

(RTFLUX OR ATFLUX).

2...(RE)WRITE THE RESTART FILE DIF3D
TO FACILITATE AUTOMATIC RESTART, THE RESTART FLAG

ON THE DIF3D RESTART CONTROL FILE WILL BE TURNED ON

AUTOMATICALLY UPON DETECTION OF:
1...MAXIMUM NUMBER OF OUTER ITERATIONS

2. TIME LIMIT.
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CN -

CN
CN TO RESTART THE FLUX CALCULATION -

CN EITHER

CN -

CN PROVIDE THE RESTART DATA SET DIF3D AND -

CN THE APPROPRIATE FLUX DATA SET (RTFLUX OR ATFLUX) -

CN AND SPECIFY THEM UNDER "BLOCK=OLD" IN THEBCD -

CN INPUT DATA

CN OR -

CN 1...SET THE RESTART FLAG (COLS. 37-42) TO1ON -

CN THE TYPE 03 CARD. THIS PERMITS IMMEDIATE -

CN RESUMPTION OF OUTER ITERATION ACCELERATION. -

CN 2..INCLUDE THE LATEST K-EFFECTIVE ESTIMATE -

CN (COLS. 13-24) AND THE DOMINANCE RATIO -

CN ESTIMATE ON THE TYPE 06 CARD (COLS. 61-72). -

CN 3...INCLUDE THE OPTIMUM OVERRELAXATION FACTORS -

CN FOR EACH GROUP (TYPE 07 CARD).

CN 4...PROVIDE THE APPROPRIATE FLUX DATA SET (RTFLUX -

CN OR ATFLUX) AND SPECIFY IT UNDER "BLOCK=OLD" -

CN IN THE BCD INPUT DATA.

CN -

CN A NON-ZERO TIME LIMIT (COLS. 43-48) OVERRIDES -

CN THE ACTUAL TIME LIMIT DETERMINED INTERNALLY -

CN BY SYSTEM ROUTINES IN THE ANL AND LBL PRODUCTION -

CN IMPLEMENTATIONS

CN

CN THE TIME LIMIT PARAMETER (COLS. 43-48) IS PERTINENT -

CN TO EACH ENTRY TO THE DIF3D MODULE.

CN

CN IT IS RECOMMENDED THAT AN ODD NUMBER OF UPSCATTER -
CN ITERATIONS BE SPECIFIED (COLS. 49-54) TO AVOID -

CN ADDITIONAL I/0 OVERHEAD.

CN

CN THE USER IS CAUTIONED TO MONITOR THE POINT-WISE -

CN FISSION SOURCE CONVERGENCE TO ENSURE THAT MONOTONIC -
CN CONVERGENCE IS OBTAINED WHEN THE EFFICIENCY OPTION -
CN (COLS. 55-60) IS ACTIVATED.

CN

CN THE OPTIMUM OVERRELAXATION FACTOR ACCELERATION OPTION -
CN IS PRIMARILY INTENDED FOR PROBLEMS KNOWN TO HAVE HIGH -
CN (>1.8) OPTIMUM OVERRELAXATION FACTORS. -

CN -

CN ITERATION CONTROL (COLS. 67-72) OF THE OPTIMUM -

CN OVERRELAXATION FACTOR ESTIMATION IS PRIMARILY INTENDED -
CN FOR USE IN CONJUNCTION WITH THE ASYMPTOTIC ACCELERATION-
gN OPTION (COLS. 61-66).

C

C

CR EDIT OPTIONS (TYPE 04) -

C -

CL FORMAT----(12,4X,1016) -

C -

CD # COLUMNS CONTENTS...IMPLICATIONS, IF ANY -

CD e s s ————
CD1 1-2 04 -

CD -

CD 2 7-12 PROBLEM DESCRIPTION EDIT (IN ADDITION TO USER INPUT -
CD SPECIFICATIONS WHICH ARE ALWAYS EDITED. -

CD 0...NO EDITS (DEFAULT). -

CD 1...PRINT EDITS.

CD 2.'WRITE EDITS TO AUXILIARY OUTPUT FILE.

CD 3. 'WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-

CD

CD 3 13-18 GEOMETRY (REGION TO MESH INTERVAL) MAP EDIT. -

CD 0...NO EDITS (DEFAULT).

CD 1...PRINT EDITS.

CD 2..WRITE EDITS TO AUXILIARY OUTPUT FILE.

CD 3...WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-
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CD
CD 4 19-24 GEOMETRY (ZONE TO MESH INTERVAL) MAP EDIT. -

CD 0...NO EDITS (DEFAULT).

CD 1...PRINT EDITS.

CD 2..WRITE EDITS TO AUXILIARY OUTPUT FILE.

CD 3...WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-
CD

CD 5 25-30 MACROSCOPIC CROSS SECTION EDIT. -

CD ENTER TWO DIGIT NUMBER SP WHERE -

CD -

CD S CONTROLS THE SCATTERING AND PRINCIPAL CROSS SECTIONS -
CD P CONTROLS THE PRINCIPAL CROSS SECTIONS EDIT ONLY. -
CD -

CD THE INTEGERS S AND P SHOULD BE ASSIGNED ONE OF THE -
CD FOLLOWING VALUES (LEADING ZEROES ARE IRRELEVANT). -
CD 0...NO EDITS (DEFAULT).

CD 1...PRINT EDITS.

CD 2..WRITE EDITS TO AUXILIARY OUTPUT FILE.

CD 3..WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-
CD

CD 6 31-36 BALANCE EDITS -

CD ENTER 3 DIGIT NUMBER GBR WHERE -

CD -

CD G CONTROLS GROUP BALANCE EDITS INTEGRATED OVER THE -
CD REACTOR

CD B CONTROLS REGION BALANCE EDIT BY GROUP -

CD R CONTROLS REGION BALANCE EDIT TOTALS

CD (INCLUDING NET PRODUCTION AND ENERGY MEDIANS) -
CD

CD THE INTEGERS G, B, AND R SHOULD BE ASSIGNED ONE OF THE -
CD FOLLOWING VALUES (LEADING ZEROES ARE IRRELEVANT) -
CD 0...NO EDITS (DEFAULT).

CD 1...PRINT EDITS.

CD 2..WRITE EDITS TO AUXILIARY OUTPUT FILE.

CD 3..WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-
CD -

CD 7 37-42 POWER EDITS -

CD ENTER 2 DIGIT NUMBER RM WHERE -

CD -

CD R CONTROLS REGION POWER AND AVERAGE POWER DENSITY EDITS-
CD M CONTROLS POWER DENSITY BY MESH INTERVAL EDIT (PWDINT)-
CD

CD THE INTEGERS R AND M SHOULD BE ASSIGNED

CD ONE OF THE FOLLOWING VALUES (LEADING ZEROES ARE -
CD IRRELEVANT)

CD 0...NO EDITS (DEFAULT). -

CD 1...PRINT EDITS.

CD 2..WRITE EDITS TO AUXILIARY OUTPUT FILE.

CD 3..WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-
CD

CD 8 43-48 FLUXEDITS -

CD ENTER 3 DIGIT INTEGER RMB WHERE -

CD -

CD R CONTROLS FLUX EDIT BY REGION AND GROUP -

CD INCLUDING GROUP AND REGION TOTALS

CD M CONTROLS TOTAL (GROUP INTEGRATED) FLUX EDIT -
CD BY MESH INTERVAL

CD B CONTROLS TOTAL FLUX EDIT BY MESH INTERVAL AND GROUP -
CD (RTFLUX OR ATFLUX)

CD -

CD THE INTEGERS R, M, AND B SHOULD BE ASSIGNED -

CD ONE OF THE FOLLOWING VALUES (LEADING ZEROES ARE -
CD IRRELEVANT)

CD 0...NO EDITS (DEFAULT). -

CD 1...PRINT EDITS.

CD 2..WRITE EDITS TO AUXILIARY OUTPUT FILE.

CD 3...WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-
CD

CD 9 49-54 ZONE AVERAGED (REAL) FLUX EDIT. -

CD 0...NO EDITS (DEFAULT). -

CD 1...PRINT EDITS.

CD 2..WRITE EDITS TO AUXILIARY OUTPUT FILE. -
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CD 3...WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-

CD -

CD 10 55-60 REGION AVERAGED FLUX EDIT. -

CD 0...NO EDITS (DEFAULT). -

CD 1...PRINT EDITS.

CD 2..WRITE EDITS TO AUXILIARY OUTPUT FILE.

CD 3...WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-
CD

CD 11 61-66 INTERFACE FILES TO BE WRITTEN IN ADDITION TO RTFLUX -
CD AND/OR ATFLUX.

CD ENTER 4 DIGIT INTEGER FSRP WHERE -

CD -

CD F CONTROLS WRITING OF SURFACE FAST FLUX TO SFEDIT -
CD S CONTROLS WRITING OF SURFACE POWER DENSITY TO SFEDIT -
CD R CONTROLS WRITING OF RZFLUX

CD P CONTROLS WRITING OF PWDINT -

CD -

CD THE INTEGERS F, S, R, AND P SHOULD BE ASSIGNED ONE OF -
CD THE FOLLOWING VALUES (LEADING ZEROES ARE IRRELEVANT) -
CD 0...DO NOT WRITE THE INTERFACE FILE

CD 1..WRITE THE INTERFACE FILE (SFEDIT WILL BE WRITTEN -

CD IN REGULAR MESH CELL ORDER)

CD 2..WRITE THE SFEDIT FILE IN REGION ORDER (PERTINENT -

CD TO THE SFEDIT FILE ONLY)

CD -

CD 12 67-72 MASTER DIF3D EDIT SENTINEL DURING CRITICALITY SEARCHES -
CD -1...SUPPRESS ALL DIF3D EDITS EXCEPT THE ITERATION -

CD HISTORY AND ERROR DIAGNOSTICS

CD 0...EDIT INPUT DATA ON 1ST SEARCH PASS, OUTPUT -

CD INTEGRALS UPON CONVERGENCE OR UPON ACHIEVING THE -
CD MAXIMUM SEARCH PASS LIMIT.

CD N...ALSO INVOKE SPECIFIED DIF3D EDITS EVERY N-TH -

CD SEARCH PASS.

C

CN MULTI-DIGIT EDIT SPECIFICATION EXAMPLES. -

CN -

CN ENTERING THE INTEGER 201 IN COLUMNS 31-36 YIELDS -

CN THE GROUP BALANCE EDIT ON THE AUXILIARY FILE AND -

CN THE REGION BALANCE EDIT ON THE PRIMARY PRINT FILE. -

CN -

CN ENTERING THE INTEGER 30 IN COLUMNS 31-36 YIELDS -

CN THE REGION BALANCE EDIT BY GROUP ON BOTH THE PRINT AND -
CN THE AUXILIARY OUTPUT FILES.

CN

CN THE INTERFACE FILE SFEDIT CONTAINS SURFACE- AND -

CN CELL-AVERAGED POWER DENSITY AND/OR FAST FLUX DATA -
CN BY MESH CELL. ON OPTION IT IS WRITTEN IN EITHER -

CN STANDARD FINE MESH CELL ORDER OR IN REGION ORDER.-

C -

C

C

CR CONVERGENCE CRITERIA (TYPE 05) -

C -

CL FORMAT-----(12,10X,3E12.5) -

C -

CD # COLUMNS CONTENTS...IMPLICATIONS, IF ANY -

CD . . ... . . . . . . . . . . . . . . . . . . . S S . . . . . . S S S o S S s-
CD1 12 05 -

CD -

CD 2 13-24 EIGENVALUE CONVERGENCE CRITERION FOR STEADY STATE -
CD CALCULATION (DEFAULT VALUE = 1.0E-7 IS RECOMMENDED). -
CD

CD 3 25-36 POINTWISE FISSION SOURCE CONVERGENCE CRITERION -
CD FOR STEADY STATE SHAPE CALCULATION

CD (DEFAULT VALUE = 1.0E-51IS RECOMMENDED) -

CD

CD 4 37-48 AVERAGE FISSION SOURCE CONVERGENCE CRITERION -
CD FOR STEADY STATE SHAPE CALCULATION

CD (DEFAULT VALUE = 1.0E-5 IS RECOMMENDED). -

C -
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CN IN UPSCATTERING PROBLEMS IT IS RECOMMENDED THAT -

CN THE EIGENVALUE CONVERGENCE CRITERION (COLS. 13-24) -

CN BE .1 TIMES THE POINTWISE FISSION SOURCE CONVERGENCE -
CN CRITERION (COLS. 25-36).

C -

C

C

CR OTHER FLOATING POINT DATA (TYPE 06) -

C -

CL FORMAT-----(12,10X,5E12.5) -

C -

CD # COLUMNS CONTENTS...IMPLICATIONS, IF ANY -

CD s ——————————————————————————————————————————————
CD1 12 06 -

CD -

CD 2 13-24 K-EFFECTIVE OF REACTOR (DEFAULT IS OBTAINED FROM -
CD THE APPROPRIATE RTFLUX OR ATFLUX FILE, IF PRESENT. -

CD OTHERWISE DEFAULT = 1.0).

CD -

CD 3 25-36 ANY POINTWISE FISSION SOURCE WILL BE NEGLECTED IN THE -
CD POINTWISE FISSION SOURCE CONVERGENCE TESTIFITIS -

CD LESS THAN THIS FACTOR TIMES THE R.M.S. FISSION -

CD SOURCE (DEFAULT VALUE = .001 IS RECOMMENDED). -

CD -

CD 4 37-48 ERROR REDUCTION FACTOR TO BE ACHIEVED BY EACH SERIES -
CD OF INNER ITERATIONS FOR EACH GROUP DURING A SHAPE -

CD CALCULATION - STRONGLY RECOMMENDED THAT THE DEFAULT -
CD VALUE OF (.04) BE USED.

CD

CD 5 49-60 STEADY STATE REACTOR POWER (WATTS). (DEFAULT =1.0). -
CD -
CD 6 61-72 DOMINANCE RATIO (FOR RESTART JOBS ONLY). -

C -

CN K-EFFECTIVE SPECIFICATIONS (COLS. 13-24): -

CN 1...FOR K-EFFECTIVE PROBLEMS, SUPPLY ESTIMATED -

CN K-EFFECTIVE OF REACTOR.

CN 2..FOR RESTARTED K-EFFECTIVE PROBLEMS, SUPPLY -

CN LATEST K-EFFECTIVE ESTIMATE SUPPLIED ON THE -

CN ITERATION HISTORY EDIT.

CN 3..FOR SOURCE PROBLEMS, SUPPLY K-EFFECTIVE OF -

CN THE REACTOR.

CN DEFAULT IS OBTAINED FROM THE APPROPRIATE RTFLUX OR -
CN ATFLUX FILE, IF PRESENT. OTHERWISE DEFAULT=1.0. -

C -

CN NON-MONOTONIC POINTWISE FISSION SOURCE CONVERGENCE -
CN IS USUALLY INDICATIVE OF THE NEED TO TIGHTEN THE ERROR -
CN REDUCTION FACTOR(COLS. 37-48). THIS IS FREQUENTLY TRUE-
CN IN TRIANGULAR GEOMETRY PROBLEMS WHERE A VALUE OF .01 IS-
CN USUALLY SUFFICIENT TO OBTAIN MONOTONIC CONVERGENCE. -
C

C

CR OPTIMUM OVERRELAXATION FACTORS (TYPE 07) -

C -

CL FORMAT-----(I2,10X,5E12.5) -

C -

CD # COLUMNS CONTENTS...IMPLICATIONS, IF ANY -

CD e e e p—————
Ch1 12 07 -

CD -

CD 2 13-24 OPTIMUM OVERRELAXATION FACTOR FOR GROUP 1. -
CD -

CD 3 25-36 OPTIMUM OVERRELAXATION FACTOR FOR GROUP 2. -
CD -

CD 4 37-48 OPTIMUM OVERRELAXATION FACTOR FOR GROUP 3. -
CD -

CD 5 49-60 OPTIMUM OVERRELAXATION FACTOR FOR GROUP 4. -
CD -

CD 6 61-72 OPTIMUM OVERRELAXATION FACTOR FOR GROUP 5. -
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TYPE 07 CARDS ARE PRIMARILY INTENDED FOR RESTART JOBS -

2 7-12 NUMBER OF OUTER (POWER) ITERATIONS PERFORMED PRIOR TO -

IS RECOMMENDED TO INCREASE THE NUMBER OF ITERATIONS IN -

CN REPEAT 5 VALUES PER CARD FOR AS MANY TYPE 07 CARDS
CN AS ARE NEEDED.

CN -

CN THE OPTIMUM OVERRELAXATION FACTORS ARE NORMALLY
CN OBTAINED FROM THE RESTART INSTRUCTIONS PRINTED

CN IMMEDIATELY AFTER THE DIF3D ITERATION HISTORY EDIT.

CN IN THE RESTART INSTRUCTIONS, THE FACTORS ARE ALWAYS
CN EDITTED IN THE --REAL PROBLEM-- ORDERING AND SHOULD BE -
CN ENTERED ON THE TYPE 07 CARD --EXACTLY-- AS EDITTED

CN IN THE RESTART INSTRUCTIONS.

CN

CN THE PERMISSIBLE FACTOR RANGE IS BOUNDED BY 1.0 AND 2.0 -
CN INCLUSIVE. A ZERO OR BLANK FACTOR ENTRY DEFAULTS

CN TO 1.0. FACTORS ARE COMPUTED FOR THOSE GROUPS HAVING
CN A FACTOR OF 1.0; FACTORS GREATER THAN 1.0 ARE NOT

CN RECOMPUTED.

CN

CN

CN ONLY (STRONGLY RECOMMENDED)

C

C

C

CR NEAR CRITICAL SOURCE PROBLEM ASYMPTOTIC EXTRAPOLATION
CR PARAMETERS (TYPE 08)

C -

CcC weekk WARNING...SELECT THIS OPTION ONLY IF THE *****

CcC ek ASYMPTOTIC EXTRAPOLATION IS REQUIRED FOR  *x**

CcC *xE% THIS PROBLEM. FrEIE -

C -

CL FORMAT-----(12,4X,16,E12.5,16)

C -

CD # COLUMNS CONTENTS...IMPLICATIONS, IF ANY

CD

CDh1 1-2 08 -

CD

CD

CD ASYMPTOTIC EXTRAPOLATION OF NEAR CRITICAL SOURCE
CD PROBLEM (DEFAULT=5).

CD

CD 3

CD TO THE NEAR CRITICAL SOURCE PROBLEM. THIS EIGENVALUE
CD MUST BE LESS THAN ONE. -

CD -

CD 4 25-30 INITIAL FLUX GUESS SENTINEL.

CD 0...FLAT FLUX GUESS=1.0 (DEFAULT)

CD 1...FLAT FLUX GUESS=0.0 -

C -

CN THE TYPE 08 CARD IS REQUIRED TO ACTIVATE AN ALTERNATE -
CN SPECIAL ACCELERATION SCHEME FOR NEAR CRITICAL

CN SOURCE PROBLEMS.

CN -

CN IF COLS. 13-24 ARE ZERO OR BLANK, THE HOMOGENEOUS

CN PROBLEM EIGENVALUE WILL BE ESTIMATED. IN THIS CASE, IT -
CN

CN COLS. 7-12 TO AT LEAST 10.

C -

C

C

CR SN TRANSPORT OPTIONS (TYPE 09)

C -

CL FORMAT-----(12,4X,216,6X,E12.4)

C -

CD # COLUMNS CONTENTS...IMPLICATIONS, IF ANY

CD =

CDh1 12 09 -

CD -

CD 2 7-12 SN ORDER.

129

13-24 EIGENVALUE OF THE HOMOGENEOUS PROBLEM CORRESPONDING



CD

CD 3 13-18 MAXIMUM ALLOWED NUMBER OF LINE SWEEPS PER LINE PER -
CD INNER ITERATION (DEFAULT= 10)

CD

CD 4 25-36 LINE SWEEP CONVERGENCE CRITERION (DEFAULT=1.0E-4). -

CN TO INVOKE THE DIF3D TRANSPORT OPTION, THE TYPE 09 CARD -

CN MUST BE PRESENT WITH A NONZERO SN ORDER. FOR THE TIME -
CN BEING, USERS MUST ALSO CONTINUE TO 'PRELIB' TO -

CN DATASET 'C116.899983.MODLIB' TO INVOKE THIS OPTION. -

C -

C

C

CR PARAMETERS FOR NODAL OPTION (TYPE 10) -

C -

CL FORMAT----(12,4X,716) -

C -

CD # COLUMNS CONTENTS...IMPLICATIONS, IF ANY -

CD s s —————————————————————————————————————————————————
CD1 12 10 -

CD -

CD 2 7-12 NODAL APPROXIMATION IN XY-PLANE. -

CD ENTER 3 DIGIT NUMBER LMN WHERE -

CD -

CD L DETERMINES WHETHER THIS IS A DIFFUSION OR TRANSPORT -
CD CALCULATION.

CD M IS THE ORDER OF THE POLYNOMIAL APPROXIMATION TO THE -
CD ONE-DIMENSIONAL FLUXES IN THE XY-PLANE. -

CD N IS THE ORDER OF THE POLYNOMIAL APPROXIMATION TO THE -
CD LEAKAGES TRANSVERSE TO THE X- AND Y-DIRECTIONS. -

CD

CD HEXAGONAL GEOMETRY:

CD L = 0...(ALWAYS - ONLY DIFFUSION THEORY IS AVAILABLE -

CD IN HEXAGONAL GEOMETRY). -

CD M = 2...NH2 FLUX APPROXIMATION. -

CD M = 3...NH3 FLUX APPROXIMATION. -

CD M = 4..NH4 FLUX APPROXIMATION (DEFAULT). -

CD N = 0...(ALWAYS).

CD -

CD CARTESIAN GEOMETRY:

CD L = 0...DIFFUSION-THEORY OPTION (DEFAULT). -

CD L = 1...TRANSPORT-THEORY OPTION. -

CD M = 2...NX2 (QUADRATIC) FLUX APPROXIMATION. -

CD M = 3..NX3 (CUBIC ) FLUX APPROXIMATION (DEFAULT). -

CD M = 4...NX4 (QUARTIC ) FLUX APPROXIMATION. -

CD N = 0...CONSTANT LEAKAGE APPROXIMATION. -

CD N = 2...QUADRATIC LEAKAGE APPROXIMATION (DEFAULT). -

CD

CD LEADING ZEROS ARE IRRELEVANT.

CD THEREFORE, DEFAULT VALUES FOR MN ARE 40 (HEXAGONAL -
CD GEOMETRY) AND 32 (CARTESIAN GEOMETRY).

CD

CD IF THE TRANSPORT OPTION (L=1) IS SPECIFIED, TRANSPORT -
CD THEORY IS USED IN BOTH THE XY-PLANE AND THE AXIAL -

CD DIRECTION IN THREE-DIMENSIONAL CARTESIAN GEOMETRY. -
CD -

CD 3 13-18 NODAL APPROXIMATION IN Z-DIRECTION. -

CD ENTER 2 DIGIT NUMBER MN WHERE -

CD -

CD M IS THE ORDER OF THE POLYNOMIAL APPROXIMATION TO THE -
CD ONE-DIMENSIONAL FLUX IN THE Z-DIRECTION.

CD N IS THE ORDER OF THE POLYNOMIAL APPROXIMATION TO THE -
CD LEAKAGE TRANSVERSE TO THE Z-DIRECTION. -

CD -

CD HEXAGONAL AND CARTESIAN GEOMETRIES: -

CD M = 2...NZ2 (QUADRATIC) FLUX APPROXIMATION. -

CD M = 3..NZ3 (CUBIC ) FLUX APPROXIMATION (DEFAULT). -

CcD M = 4...NZ4 (QUARTIC ) FLUX APPROXIMATION (CARTESIAN -

CD GEOMETRY ONLY).

CD N =0..CONSTANT LEAKAGE APPROXIMATION. -
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CD N = 2...QUADRATIC LEAKAGE APPROXIMATION (DEFAULT). -
CD -
CD LEADING ZEROS ARE IRRELEVANT. -

CD THEREFORE, DEFAULT VALUE FOR MN IS 32. -
CD -

CD 4 19-24 COARSE-MESH REBALANCE ACCELERATION CONTROL. -
CD -1...NO COARSE-MESH REBALANCE ACCELERATION. -

CD .GT.0...NUMBER OF FINE MESH PER REBALANCE MESH IN X- AND -
CD Y-DIRECTIONS - CARTESIAN GEOMETRY ONLY (DEFAULT=4).-

CD -

CD 5 25-30 NUMBER OF XY-PLANE PARTIAL CURRENT SWEEPS PER GROUP -
CD PER AXIAL MESH SWEEP PER OUTER ITERATION. -

CD (DEFAULT =0 - LET CODE DECIDE).

CD

CD 6 31-36 NUMBER OF AXIAL PARTIAL CURRENT SWEEPS PERGROUP -
CD PER AXIAL PARTIAL CURRENT SWEEP

CD PER OUTER ITERATION (DEFAULT=2). -

CD

CD 7 37-42 HALF-DOMAIN SYMMETRY FLAG.

CD "1...DO NOT USE 30 DEGREE (HEXAGONAL GEOMETRY) OR 45 -
CD DEGREE (CARTESIAN GEOMETRY) PLANAR SYMMETRY EVEN -
CD IF SUCH SYMMETRY EXISTS.

CD 0...USE 30 DEGREE (HEXAGONAL GEOMETRY) OR 45 DEGREE -
CD (CARTESIAN GEOMETRY) PLANAR SYMMETRY IF SUCH -

CD SYMMETRY EXISTS (DEFAULT).

C

CN THE NODAL OPTION IS INVOKED IN HEXAGONAL GEOMETRY BY -
CN SPECIFYING GEOMETRY-TYPE SENTINELS BETWEEN 110 AND 128 -
CN ON THE A.NIP3 TYPE 03 CARD.

CN

CD 8 43-48 ASYMPTOTIC SOURCE EXTRAPOLATION SENTINEL. -

CD 0...PERFORM ASYMPTOTIC SOURCE EXTRAPOLATION ON THE -
CD THE NODAL OUTER ITERATIONS.

CD 1..DO NOT PERFORM ASYMPTOTIC SOURCE EXTRAPOLATION -
CD

CN THE NODAL OPTION IS INVOKED IN CARTESIAN GEOMETRY BY -
CN SPECIFYING GEOMETRY-TYPE SENTINELS 40 OR 44 ON THE -

CN ANIP3 TYPE 03 CARD AND PROVIDING ANY ACCEPTABLE -

CN (E.G. DEFAULT) VALUES ON A.DIF3D TYPE 10 CARD. -

CN

CN +i* THE CARTESIAN-GEOMETRY NODAL OPTION MAY NOT BE -
CN AVAILABLE IN ALL VERSIONS OF DIF3D. ***

C

CN IT IS IMPORTANT THAT THE NUMBER OF FINE MESH PER -

CN REBALANCE MESH BE CHOSEN SUCH THAT THE AVERAGE -
CN REBALANCE MESH SPACING IS APPROXIMATELY 30 TO 40 CM IN -
CN THE XY-PLANE. THUS, FOR EXAMPLE, IF THE AVERAGE FINE -

CN MESH SPACING IS DELTA CM, THEN THE INTEGER INPUT IN -

CN COLS. 19-24 SHOULD BE BETWEEN 30/DELTA AND 40/DELTA. -

C -

CN IF SLOW (OR DIVERGENT) ITERATIVE CONVERGENCE BEHAVIOR -
CN IS OBSERVED, THE NUMBER OF PARTIAL CURRENT SWEEPS -
CN SPECIFIED IN COLS. 25-30 AND 31-36 SHOULD BE INCREASED.-

C -

C

C

CR AXIAL COARSE-MESH REBALANCE BOUNDARIES FOR NODAL -
CR OPTION (TYPE 11)

C -

CL FORMAT----(12,10X,3(16,E12.5)) -

C -

CD # COLUMNS CONTENTS...IMPLICATIONS, IF ANY -

CD e e s ————
CD1 12 11 -

CD -

CD 2 13-18 NUMBER OF AXIAL COARSE-MESH REBALANCE INTERVALS. -
CD

CD 3 19-30 UPPER Z-COORDINATE OF THE COARSE-MESH REBALANCE -
CD BOUNDARY.

CD -
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CD 4 31-36 NUMBER OF AXIAL COARSE-MESH REBALANCE INTERVALS. -
CD

CD 5 37-42 UPPER Z-COORDINATE OF THE COARSE-MESH REBALANCE -
CD BOUNDARY.

CD -

CD 6 49-54 NUMBER OF AXIAL COARSE-MESH REBALANCE INTERVALS. -
CD

CD 7 55-66 UPPER Z-COORDINATE OF THE COARSE-MESH REBALANCE -
CD BOUNDARY.

C -

CN THE TYPE 11 CARD IS PERTINENT ONLY WHEN THE THREE- -

CN DIMENSIONAL NODAL OPTION (A.NIP3 TYPE 03 GEOMETRY-TYPE -
CN SENTINEL VALUE EQUAL TO 44 OR BETWEEN 120 AND 128) IS -

CN SPECIFIED.

CN -

CN IF NO TYPE 11 CARDS ARE PRESENT, THE AXIAL COARSE-MESH -
CN REBALANCE BOUNDARIES ARE DEFINED BY THE AXIAL COARSE- -
CN MESH BOUNDARIES OBTAINED FROM THE GEODST FILE. THESE -
CN BOUNDARIES IN TURN ARE ANY BOUNDARY POSITIONS SPECIFIED-
CN ON THE DATASET A.NIP3 TYPE 09 OR 30 CARDS. -

CN -

CN AXIAL COARSE-MESH REBALANCE BOUNDARIES MUST BE SELECTED-
CN FROM THE SET OF COARSE-MESH BOUNDARIES CONTAINED IN THE-
CN GEODST FILE, AS DETERMINED BY THE COARSE-MESH -

CN BOUNDARIES WHICH ARE EXPLICITLY MENTIONED ON THE -

CN DATASET A.NIP TYPE 09 OR 30 CARDS.

CN

CN BOUNDARIES ARE SPECIFIED VIA NUMBER PAIRS. -

CN EACH NUMBER PAIR IS OF THE FORM (N(I), Z(l)). THERE -

CN ARE N(I) AXIAL COARSE-MESH REBALANCE INTERVALS BETWEEN -
CN Z(1-1) AND Z(l), WHERE Z(0) IS THE LOWER REACTOR -

CN BOUNDARY IN THE Z-DIRECTION. NUMBER PAIRS MUST BE -

CN GIVEN IN ORDER OF INCREASING MESH COORDINATES. ALL -

CN AXIAL COARSE-MESH REBALANCE BOUNDARIES MUST COINCIDE -
CN WITH THE MESH LINES WHICH BOUND MESH INTERVALS. -

C -

C

C

CR PARAMETERS FOR VARIATIONAL NODAL OPTION (TYPE 12)

C -

CL FORMAT----(12,4X,1116) -

C -

CD # COLUMNS CONTENTS...IMPLICATIONS, IF ANY -

CD e ——
CD1 12 12 -

CD -

CD 2 7-12 NODAL SPATIAL APPROXIMATION.

CD ENTER 3 DIGIT NUMBER LMN WHERE -

CD -

CD L IS THE ORDER OF THE POLYNOMIAL APPROXIMATION OF THE -
CD SOURCE WITHIN THE NODE.

CD M IS THE ORDER OF THE POLYNOMIAL APPROXIMATION OF THE -
CD FLUXES WITHIN THE NODE.

CD N IS THE ORDER OF THE POLYNOMIAL APPROXIMATION OF THE -
CD LEAKAGES ON THE SURFACES OF THE NODES.

CD

CD HEXAGONAL AND CARTESIAN GEOMETRY: -

CD L = 1... LINEAR SOURCE APPROXIMATION. -

CD L = 2... QUADRATIC SOURCE APPROXIMATION. -

CD L=3.. CUBIC SOURCE APPROXIMATION. -

CD L = 4... QUARTIC SOURCE APPROXIMATION. -

CD L =5... 5TH ORDER SOURCE APPROXIMATION. -

CD L = 6... 6TH ORDER SOURCE APPROXIMATION. -

CD (DEFAULT VALUE L=N+1),

CD (L CANNOT BE GREATER THAN M). -

CD M =1... LINEAR FLUX APPROXIMATION. -

CD M = 2... QUADRATIC FLUX APPROXIMATION. -

CD M=3..CUBIC FLUX APPROXIMATION.

CD M = 4... QUARTIC FLUX APPROXIMATION (DEFAULT) -

CD M =5... 5TH ORDER FLUX APPROXIMATION.
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LEADING ZEROS ARE IRRELEVANT
THEREFORE, DEFAULT VALUES FOR LMN ARE 241 -
M =5 OR 6 ONLY FOR HEXAGONAL GEOMETRY. -
IN 3D HEXAGONAL GEOMETRY M =5 OR 6 PROVIDES -
FULL EXPANSION IN THE X AND Y PLANE, Z DIRECTION -
IS EXPANDED TO 4TH ORDER.

3 13-18 ANGULAR APPROXIMATION.
ENTER 2 DIGIT NUMBER MN WHERE

.. 6TH ORDER FLUX APPROXIMATION.
.. FLAT LEAKAGE APPROXIMATION.

.. LINEAR LEAKAGE APPROXIMATION (DEFAULT) -
.. QUADRATIC LEAKAGE APPROXIMATION. -

M IS THE ORDER OF THE PN EXPANSION OF THE FLUX. -
N IS THE ORDER OF THE PN EXPANSION OF THE LEAKAGE.

HEXAGONAL AND CARTESIAN GEOMETRIES:
M= 1... P1 FLUX EXPANSION.
.. P3 FLUX EXPANSION (DEFAULT).

.. P5 FLUX EXPANSION

Z2Z2zZ2Z<Z
I
OWkFrOIw

.. P1 LEAKAGE EXPANSION.
... P3 LEAKAGE EXPANSION (DEFAULT).
.. PS5 LEAKAGE EXPANSION

LEADING ZEROS ARE IRRELEVANT.

THEREFORE, DEFAULT VALUE FOR MN IS 33.

MN EQUAL TO 11 CORRESPONDS TO DIFFUSION CALCULATION

IF MN IS NEGATIVE, SIMPLIFIED SPHERICAL HARMONICS

ARE USED.

4 19-24 COARSE-MESH REBALANCE ACCELERATION CONTROL.
-1...NO COARSE-MESH REBALANCE ACCELERATION. -

.GT.0...NUMBER OF FINE MESH PER REBALANCE MESH IN X- AND

Y-DIRECTIONS - CARTESIAN GEOMETRY ONLY (DEFAULT=6).-

5 25-30 NUMBER OF XY-PLANE PARTIAL CURRENT SWEEPS PER GROUP

PER AXIAL MESH SWEEP PER OUTER ITERATION. -
(DEFAULT =0 - LET CODE DECIDE).

6 31-36 NUMBER OF AXIAL PARTIAL CURRENT SWEEPS PER GROUP
PER AXIAL PARTIAL CURRENT SWEEP
PER OUTER ITERATION (DEFAULT 0 - LET CODE DECIDE)

7 37-42 HALF-DOMAIN SYMMETRY FLAG
-1...DO NOT USE 30 DEGREE (HEXAGONAL GEOMETRY) OR 45
DEGREE (CARTESIAN GEOMETRY) PLANAR SYMMETRY EVEN

IF SUCH SYMMETRY EXISTS.

0...USE 30 DEGREE (HEXAGONAL GEOMETRY) OR 45 DEGREE
(CARTESIAN GEOMETRY) PLANAR SYMMETRY IF SUCH
SYMMETRY EXISTS (DEFAULT)

THE NODAL OPTION IS INVOKED IN HEXAGONAL GEOMETRY BY

SPECIFYING GEOMETRY-TYPE SENTINELS BETWEEN 110 AND 128 -

ON THE A.NIP3 TYPE 03 CARD.

8 43-48 ASYMPTOTIC SOURCE EXTRAPOLATION SENTINEL.
-1...PERFORM ASYMPTOTIC SOURCE EXTRAPOLATION ON THE
NODAL OUTER ITERATIONS ONLY ON FISSION SOURCES.

NO EXTRA-SPACE IS NEEDED TO STORE PREVIOUS OUTER

ITERATION CURRENTS.

0...PERFORM ASYMPTOTIC SOURCE EXTRAPOLATION ON THE
NODAL OUTER ITERATIONS ON FISSION SOURCES AND

CURRENTS.

1...DO NOT PERFORM ASYMPTOTIC SOURCE EXTRAPOLATION
9 49-54 ANISOTROPIC SCATTERING APPROXIMATION NPNO

0 ISOTROPIC SCATTERING
ANISOTROPIC SCATTERI

DEFAULT).
G ORDE
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SB éNISSOTROPIC ORDER SPECIFIED IN ISOTXS OR COMPXS -

CD
CD 10 5560 EXTENDED TRANSPORT APPROXIMATION (NXTR) ON TOTAL
CD CROSS SECTIO

CD -L..IF NPNQ EQ. N5 USE TOTAL CROSS SEGTION PROVIDED -

CD IN COMPXS FILE, OTHERWISE USE TRANSPORT CROSS -
CD SECTION INSTEAD OF TOTAL ONE.

CD 0..(DEFAULT),

CD NPNO .EQ. 0 USE TRANSPORT CROSS SECTION -

CD PROVIDED N COMPXS FILE.

CD IF NPNO .GT. 0 AND NPNO EQ. MAXORD USE TOTAL -

CD CROSS SECTION PROVIDED IN COMPXS FILE.

CD IF NPNO .GT. 0 AND NPNO_.LT. MAXORD CORRECT TOTAL -
CD CROSS SECTION PROVIDED IN COMPXS FILE WITH -

CD EXTENDED TRANSPORT APPROXIMATION TAKING INTO -
CD ACCOUNT THE NPNO + 1 ORDER SCATTERING CROSS -
CD SECTIONS (BHS APPROXIMATION).

CD N...IF NXTR ,LE. NPNO USE TOTAL CROSS SECTION. -

CD IF NXTR .GT, NPNO PERFORM EXTENDED TRANSPORT -
CD APPROXIMATION ON TOTAL CROSS SECTION FROM NPNO + 1 -
co TO NXTR ORDER.

CD11 61-66 NODAL COUPLING COEFFICIENT PACKING OPTION.

CD 0..NO PACKING WILL BE PERFORMED UNLESS NOT ENOUGH -
CD ECM MEMORY IS AVAILABLE (DEFAULT )

CD 1..NODAL COUPLING COEFFICIENT WILL BE PACKED (ONLY -
CD UNIS E ELEMENTS ARE STORED). THIS OPTION SHOULD -
CD SED, ESPECIALLY ON WORKSTATIONS, WHEN IT WILL -
CD ALLOW THE PROBLEM TO RUN WITH ALL GROUP FLUXES -
cp AND CURRENTS IN CORE.

CD 12 67-72 RADIAL INNER ITERATION ALGORYTHM. -

CD 0...PARTITIONED MATRIX ALGORYTHM (DEFAULT).

CD 1. FULL MATRIX ALGORYTHM. THIS ALGORYTHM IS SOMETIMES -
CD NECESSARY WITH VERY SMALL NODE MESH SIZE WHERE -
CD DIVERGENCE CAN OCCUR. THIS ALGORYTHM REQUIRES A -
CD SIGNIFICANTLY LARGER COMPUTATIONAL TIME.

CD FULL MATRIX ALGORYTHM IS IMPOSED WHEN ONLY ONE -
CD OUTER ITERATION IS SPECIFIED (FIXED SOURCE -

CD PROBLEM).

CD N...IF A POSITIVE NUMBER N GREATER THAN 1 AND SMALLER -
CD THAN THE TOTAL NUMBER OF INNER ITERATIONS IS -

CD SPECIFIED, THE FULL MATRIX ALGORYTHM IS APPLIED -

CD WITH FREQUENCY N DURING THE INNER ITERATIONS. -

CD IF N GREATER OR EQUAL TO THE TOTAL NUMBER OF INNER -
CD ITERATION FOR THE GROUP THE PARTITIONED MATRIX -
co ALGORYTHM 1S APPLIED.

CN THE NODAL OPTION IS INVOKED IN CARTESIAN GEOMETRY BY -
CN SPECIFYING GEOMETRY-TYPE SENTINELS 40 OR 44 ON THE -
CN A.NIP3 TYPE 03 CARD AND PROVIDING ANY ACCEPTABLE -
cN (E.G. DEFAULT) VALUES ON A.DIF3D TYPE 12 CARD. -

CN *+ THE CARTESIAN-GEOMETRY NODAL OPTION MAY NOTBE -
CN AVAILABLE IN ALL VERSIONS OF DIF3D. *** -

C -

CN IT IS IMPORTANT THAT THE NUMBER OF FINE MESH PER -
CN REBALANCE MESH BE CHOSEN SUCH THAT THE AVERAGE -
CN REBALANCE MESH SPACING IS APPROXIMATELY 30 TO 40 CM IN -
CN THE XY-PLANE. THUS, FOR EXAMPLE, IF THE AVERAGE FINE -
CN MESH SPACING IS DELTA CM, THEN THE INTEGER INPUT IN -
CN COLS. 19-24 SHOULD BE BETWEEN 30/DELTA AND 40/DELTA. -
C -

CN IF SLOW (OR DIVERGENT) ITERATIVE CONVERGENCE BEHAVIOR -
CN IS OBSERVED, THE NUMBER OF PARTIAL CURRENT SWEEPS -
CN SPECIFIED IN COLS. 25-30 AND 31-36 SHOULD BE INCREASED.-

C -

C

CEOF
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